康轶非, 宋永端, 宋宇, 闫德立, 李丹勇. 平方根容积卡尔曼滤波在移动机器人SLAM中的应用[J]. 机器人, 2013, 35(2): 186-193.DOI: 10.3724/SP.J.1218.2013.00186.
KANG Yifei, SONG Yongduan, SONG Yu, YAN Deli, LI Danyong. Square-Root Cubature Kalman Filter and Its Application to SLAM of an Mobile Robot. ROBOT, 2013, 35(2): 186-193. DOI: 10.3724/SP.J.1218.2013.00186.
For simultaneous localization and mapping (SLAM) of robots, a new solution is proposed, named square-root cubature Kalman filter based SLAM algorithm (SCKF-SLAM). The main contribution of the proposed algorithm is that the SLAM posterior probability density is calculated by using the square root cubature Kalman filter in order to reduce linearization error and improve SLAM accuracy. Instead of covariance matrixes, square-root factors are used in the proposed SLAM algorithm to avoid the time-consuming Cholesky decompositions and improve the calculation efficiency. In experiments, the proposed algorithm is compared with extended Kalman filter SLAM (EKF-SLAM) and unscented Kalman filter SLAM (UKF-SLAM). The results show that compared with EKF-SLAM, precision of SCKF-SLAM is doubled, and compared with UKF-SLAM, SCKF-SLAM saves a quarter of computation resources.
[1] Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-108. [2] Smith R C, Cheeseman P. On the representation and estimation of spatial uncertainty[J]. International Journal of Robotics Research, 1986, 5(4): 56-68. [3] Konolige K, Agrawal M. FrameSLAM: From bundle adjustment to real-time visual mapping[J]. IEEE Transactions on Robotics, 2008, 24(5): 1066-1077. [4] Huang S D, Wang Z, Dissanayake G. Sparse local submap joining filter for building large-scale maps[J]. IEEE Transactions on Robotics, 2008, 24(5): 1121-1130. [5] Schleicher D, Bergasa L M, Ocana M, et al. Real-time hierarchical outdoor SLAM based on stereovision and GPS fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(3): 440-452. [6] Eustice R, Singh H, Leonard J J. Exactly sparse delayed-state filters[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2005: 2417-2424.[7] Ila V, Porta J M, Andrade-Cetto J. Information-based compact pose SLAM[J]. IEEE Transactions on Robotics, 2010, 26(1): 78-93. [8] Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping problem[C]//Proceedings of National Conference on Artificial Intelligence. Cambridge, USA: MIT Press, 2002: 593-598.[9] Montemerlo M, Thrun S, Koller D, et al. FastSLAM2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges[C]//Proceedings of International Conferences on Artificial Intelligence. California, CA, USA: IJCAI, 2003: 1151-1156.[10] Bailey T, Nieto J, Nebot E. Consistency of the FastSLAM algorithm[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2006: 424-429.[11] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422. [12] Song Y, Li Q L, Kang Y F, et al. CFastSLAM: A new Jacobian free solution to SLAM problem[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2012: 3063-3068.[13] Kang J G, Choi W S, An S Y, et al. Augmented EKF based SLAM method for improving the accuracy of the feature map[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2010: 3725-3731.[14] van der Merwe R, Wan E A. The square-root unscented Kalman filter for state and parameter estimation[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway, NJ, USA: IEEE, 2001: 3461-3464.[15] Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.