SEM-based Tele-nanomanipulation System with Virtual 3D Visualand Force Interaction
LI Dongjie1,2, RONG Weibin1, SUN Lining1, XIAO Wanzhe1, ZOU Yu1
1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China;
2. Institute of Electrical Control and Automation Technology, Harbin University of Science and Technology, Harbin 150080, China
李东洁, 荣伟彬, 孙立宁, 肖万哲, 邹宇. 基于虚拟3D视觉和力觉交互的SEM遥纳操作系统[J]. 机器人, 2013, 35(1): 52-59,66.DOI: 10.3724/SP.J.1218.2013.00052.
LI Dongjie, RONG Weibin, SUN Lining, XIAO Wanzhe, ZOU Yu. SEM-based Tele-nanomanipulation System with Virtual 3D Visualand Force Interaction. ROBOT, 2013, 35(1): 52-59,66. DOI: 10.3724/SP.J.1218.2013.00052.
In order to increase the interaction of nanomanipulation, a tele-nanomanipulation platform with virtual 3D visual feedback and virtual force sense feedback is built by combining with the virtual reality technology and the force feedback device. To ensure that the virtual environment is able to reflect the real nanomanipulation environment accurately, the collision detection and force sensing rendering of the virtual model is designed in detail. The virtual match link between the force feedback device and virtual environment is introduced to ensure the stability of the force interaction interface and to increase the coordination of the master control module. Aiming at the accurate nanomanipulation, the image characteristics extraction method based on the region of interest is adopted to exact the depth information of probe. Then the relationship of image fuzzy degree and the distance between the probe and the substrate is quickly established, and the closed-loop control of the probe is realized. Finally, with the developed platform and the proposed method, the shift experiments of single ZnO nanowire are completed.
[1] Jain K. Recent advances in nanotechnology[J]. Technology in Cancer Research & Treatment, 2008, 7(1): 1-13.[2] Cavalcanti A, Shirinzadeh B, Murphy D, et al. Nanorobots for laparoscopic cancer surgery[C]//6th IEEE/ACIS International Conference on Computer and Information Science. Piscataway, NJ, USA: IEEE, 2007: 738-743.[3] Mick U, Weigel M, Fatikow S. Robotic workstation for AFM-based nanomanipulation inside an SEM[C]//IEEE International Conference on Advanced Intelligent Mechatronics. Piscataway, NJ, USA: IEEE, 2010: 696-702.[4] Onal C D, Sitti M. Teleoperated 3-D force feedback from the nanoscale with an atomic force microscope[J]. IEEE Transactions on Nanotechnology, 2010, 9(1): 46-54. [5] Vogl W, Sitti M. Augmented reality user interface for an atomic force microscope-based nanorobotic system[J]. IEEE Transactions on Nanotechnology, 2006, 5(4): 397-406. [6] Mokaberi B, Requicha A G. Compensation of scanner creep and hysteresis for AFM nanomanipulation[J]. IEEE Transactions on Automation Science and Engineering, 2008, 5(2): 197-206. [7] Mick U, Eichhorn V, Wortmann T, et al. Combined nanorobotic AFM/SEM system as novel toolbox for automated hybrid analysis and manipulation of nanoscale objects[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2010: 4088-4093.[8] Jasper D, Fatikow S. Line scan-based high-speed position tracking inside the SEM[J]. International Journal of Optomechatronics, 2010, 4(2): 115-135. [9] Sievers T, Fatikow S. Real-time object tracking for the robot based nanohandling in a scanning electron microscope [J]. Journal of Micromechatronics—Special Issue on Micro/Nanohandling, 2006, 3(3/4): 267-284.[10] 化建宁,崔玉洁,李洪谊,等. 具有虚拟力觉导引功能的机器人网络遥操作系统[J].机器人,2010,32(4): 522-528. Hua J N, Cui Y J, Li H Y, et al. Network-based tele-robotic system with guidance functionality from virtual force[J]. Robot, 2010, 32(4): 522-528. [11] 孙立宁,谭福生,荣伟彬,等.微操作机器人的虚拟现实体系结构研究[J].组合机床与自动化加工技术,2003(7):9-14.Sun L N, Tan F S, RongWB, et al. Research on the architectureof virtual reality based on micromanipulation robot[J]. ModularMachine Tool & Automatic Manufacturing Technique, 2003(7):9-14.[12] Spanlang B, Normand J, Giannopoulos E, et al. GPU based detectionand mapping of collisions for haptic rendering in immersivevirtual reality[C]//IEEE International Symposium onHaptic Audio-Visual Environments and Games. Piscataway, NJ,USA: IEEE, 2010: 1-4.[13] 王乐锋.微构件粘着接触模型和基于粘着力的微操作方法研究[D].哈尔滨:哈尔滨工业大学,2008:30-34.Wang L F. Research on the adhesive contact of micropartsand micromanipulation methods based on adhesion forces[D].Harbin:Harbin Institute of Technology, 2008: 30-34.[14] Adams R J, Hannaford B. Stable haptic interaction with virtualenvironments[J]. IEEE Transactions on Robotics and Automation,Automation,1999, 15(3): 465-474. [15] Kim S G, Sitti M. Task-based and stable telenanomanipulationin a nanoscale virtual environment[J]. IEEE Transactions onAutomation Science and Engineering, 2006, 3(3): 240-247. [16] 吕遐东,黄心汉,王敏,等.基于显微图像散焦特征的微操作机器人深度信息提取[J].机器人,2003,25(4): 322-326.Lu X D, Huang X H, Wang M, et al. Micromanipulationrobot depth extraction based on micro image defocus feature[J].Robot, 2003, 25(4): 322-326.