谢立敏, 陈力 . 具有柔性关节的漂浮基空间机械臂基于状态观测器的轨迹跟踪鲁棒反步控制及弹性振动抑制[J]. 机器人, 2012, 34(6): 722-729.DOI: 10.3724/SP.J.1218.2012.00722.
XIE Limin, CHEN Li. Robust Backstepping Control Based on State Observer and Elastic Vibration Suppressing of Free-Floating Space Manipulator with Flexible Joints. ROBOT, 2012, 34(6): 722-729. DOI: 10.3724/SP.J.1218.2012.00722.
The dynamics modeling, motion trajectory tracking control and elastic vibration suppressing problems of free-floating space manipulator system with flexible joints, uncertain system parameters and external disturbances are studied. The system's dynamic equations are established by using the momentum conservation, angular momentum conservation and the Lagrange equation. According to the singular perturbation method, the system is decomposed into two independent subsystems: a slow subsystem (represents the system's rigid part) and a fast subsystem (represents the system's flexible part). For the slow subsystem, a robust backstepping control method based on a state observer is designed to eliminate the “rigid-flexible rotation angle error”, compensate the uncertain system parameters and the external disturbances, and achieve the asymptotic tracking of the space manipulator. During the control procedure, there is no need to measure and feedback the system's velocity signals by use of the state observer, so the control method is simpler and more precise. For the fast subsystem, a velocity difference feedback control method is used to stabilize the elastic vibrations caused by the flexible joints, and guarantee the system's stability. The simulation results prove the proposed control method's efficiency.
[1] Abiko S, Yoshida K. An adaptive control of a space manipulator for vibration suppression[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2005: 2167-2172.[2] 陈力,刘延柱.漂浮基空间机械臂分解运动控制的增广自适应算法[J].机器人,1999,21(6): 401-406. Chen L, Liu Y Z. The adaptive control schemes of resolved motion for space-based manipulator to track the desired trajectory of workspace[J]. Robot, 1999, 21(6): 401-406.[3] 丁希仑,战强,解玉文.自由漂浮的空间机器人系统的动力学奇异特性分析及其运动规划[J].航空学报,2001,22(5): 474-477. Ding X L, Zhan Q, Xie Y W. Dynamic singularity analysis and motion planning of free-floating space robot systems[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(5): 474-477.[4] Papadopoulos E, Tortopidis I, Nanos K. Smooth planning for free-floating space robots using polynomials[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2005: 4272-4277.[5] 洪昭斌,陈力.漂浮基双臂空间机器人系统的模糊神经网络自学习控制[J].机器人,2008,30(5): 435-439. Hong Z B, Chen L. Fuzzy neural network self-learning control of free-floating dual-arm space robot system[J]. Robot, 2008, 30(5): 435-439.[6] 洪在地,贠超,陈力.柔性臂漂浮基空间机器人建模与轨迹跟踪控制[J].机器人,2007,29(1): 92-96. Hong Z D, Yun C, Chen L. Modeling and trajectory tracking control of a free-floating space robot with flexible manipulators[J]. Robot, 2007, 29(1): 92-96.[7] 王从庆,张承龙.自由浮动柔性双臂空间机器人系统的动力学控制[J].机械工程学报,2007,43(10): 197-200. Wang C Q, Zhang C H. Dynamic control of a free-floating flexible dual-arm space robotic system[J]. Chinese Journal of Mechanical Engineering, 2007, 43(10): 197-200.[8] Kumar A, Pathak P, Sukavanam N. Reduced model based control of two link flexible space robot[J]. Intelligent Control and Automation, 2011, 2(2): 112-120. [9] Elmaraghy H A, Lahdhiri T, Ciuca F. Robust linear control of flexible joint robot systems[J]. Journal of Intelligent and Robotic Systems, 2002, 34(4): 335-356. [10] Yoo S J, Park J B, Choi Y H. Adaptive output feedback control of flexible-joint robots using neural networks: Dynamic surface design approach[J]. IEEE Transactions on Neural Networks, 2008, 19(10): 1712-1726. [11] Abdollahi F, Talebi H A, Patel R V. State estimation for flexible-joint manipulators using stable neural networks[C]//IEEE International Symposium on Computational Intelligence in Robotics and Automation. Piscataway, NJ, USA: IEEE, 2003: 25-29.[12] Ulrich S, Sasiadek J Z. Extended Kalman filtering for flexible joint space robot control[C]//American Control Conference. Piscataway, NJ, USA: IEEE, 2011: 1021-1026.[13] Hu Y R, Vukovich G. Modeling and control of freeflying flexible joint coordinated robots[C]//8th International Conference on Advanced Robotics. Piscataway, NJ, USA: IEEE, 1997: 1013-1020.[14] Xie L M, Chen L. Singular perturbation and fuzzy variable structure sliding mode control of space robot system with flexible joint in inertial space[C]//62nd International Astronautical Federation. 2011.[15] Xian B, de Queiroz M S, Dawson D M, et al. A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems[J]. Automatica, 2004, 40(4): 695-700. [16] Spong M W, Vidyasagar M. Robot dynamics and control[M]. New York, NY, USA: JohnWiley & Sons, 1989.[17] Kokotovic P V, Khalil H K, Reilly J O. Singular perturbation methods in control: Analysis and design[M]. Philadelphia, PA, USA: SIAM, 1986.[18] Slotin J E, Li W P. On the adaptive control of robot manipulators[J]. International Journal of Robotics Research, 1987, 6(3): 49-59. [19] Craig J J. Adaptive control of mechanical manipulators[M]. Boston, MA, USA: Addison-Wesley Pub, 1988.[20] Nicosia S, Tomei P. Robot control by using only joint position measurements[J]. IEEE Transactions on Automatic Control, 1990, 35(9): 1058-1061.