Multiple Features Tracking Algorithm Based on an Improved Fusion Strategy
XIA Yu1, WU Xiaojun2, LI Ju1, ZHOU Lifan1
1. School of Computer Science and Engineering, Changshu Institute of Technology, Changshu 215500, China;
2. School of IoT Engineering, Jiangnan University, Wuxi 214122, China
Abstract:To solve the problem of visual tracking by multiple features fusion in complex scenes, a multiple features tracking algorithm based on an improved fusion strategy is presented. The proposed algorithm can solve the common computational problem and dimensional fault of the fusion algorithm by the improved fusion method under the particle filter framework. State relationship diagram introduced in the novel fusion strategy can improve the precision and robustness of tracking. When there are deviations of object state, this method can estimate the uncertainty measurement of features by sparsity and select the best state on line. In this way, the quality of state space can be guaranteed, and the performance of object tracking is improved. Experimental results show that the proposed method is stabler and more robust than the single feature algorithm and other multiple features fusion tracking algorithms. The root mean square errors in 3 experiments are all less than 1.2 pixels.
[1] Smeulders A W M, Chu D M, Cucchiara R, et al. Visual tracking: An experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442-1468.
[2] 张焕龙,胡士强,杨国胜.基于外观模型学习的视频目标跟踪方法综述[J].计算机研究与发展,2015,52(1):177-190.Zhang H L, Hu S Q, Yang G S. Video object tracking based on appearance models learning[J]. Journal of Computer Research and Development, 2015, 52(1): 177-190.
[3] Chu C T, Hwang J-N, Pai H-I, et al. Tracking human under occlusion based on adaptive multiple kernels with projected gradients[J]. IEEE Transactions on Multimedia, 2013, 15(7): 1602-1615.
[4] Gustafsson F, Gunnarsson F, Bergman N, et al. Particle filters for positioning, navigation and tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 425-437.
[5] Nummiaro K, Koller-Meier E B, van Gool L. An adaptive color-based particle filter[J]. Image and Vision Computing, 2003, 21(1): 99-110.
[6] Birchfield S. Elliptical head tracking using intensity gradients and color histograms[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, USA: IEEE Computer Society, 1998: 232-237.
[7] Wang J Q, Yagi Y. Integrating color and shape-texture features for adaptive real-time object tracking[J]. IEEE Transactions on Image Processing, 2008, 17(2): 235-240.
[8] Wang Q, Chen F, Xu W L. Adaptive multi-cue tracking by online appearance learning[J]. Neurocomputing, 2011, 74(6): 1035-1045.
[9] Erdem E, Dubuisson S, Bloch I. Fragments based tracking with adaptive cue integration[J]. Computer Vision and Image Understanding, 2012, 116(7): 827-841.
[10] Zoidi O, Nikolaidis N, Tefas A, et al. Stereo object tracking with fusion of texture, color and disparity information[J]. Signal Processing: Image Communication, 2014, 29(5): 573-589.
[11] Kittler J, Hatef M, Duin R P W, et al. On combining classifiers [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(3): 226-239.
[12] 钟小品,薛建儒,郑南宁,等.基于融合策略自适应的多线索跟踪方法[J].电子与信息学报,2007,29(5):1017-1021.Zhong X P, Xue J R, Zheng N N, et al. An adaptive fusion strategy based multiple-cue tracking[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1017-1021.
[13] 顾鑫,王海涛,汪凌峰,等.基于不确定性度量的多特征融合跟踪[J].自动化学报,2011,37(5):550-559.Gu X, Wang H T, Wang L F, et al.Fusing multiple features for object tracking based on uncertainty measurement[J]. Acta Automatica Sinica, 2011, 37(5): 550-559.
[14] Zhang X Q, Li W, Ye X Z, et al. Robust hand tracking via novel multi-cue integration[J]. Neurocomputing, 2015, 157(6): 296-305.
[15] Mei X, Ling H B. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272.
[16] Wang D, Lu H C, Yang M H. Online object tracking with sparse prototypes[J]. IEEE Transactions on Image Processing, 2013, 22(1): 314-325.
[17] Zhuang B H, Lu H C, Xiao Z Y, et al. Visual tracking via discriminative sparse similarity map[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1872-1881.
[18] Babu R V, Parate P, Acharya A K. Robust tracking with interest points: A sparse representation approach[J]. Image and Vision Computing, 2015, 33(1): 44-56.
[19] 章毓晋.图像工程[M].2 版.北京:清华大学出版社,2007:165-170.Zhang Y J. Image Engineering[M]. 2nd ed. Beijing: Tsinghua University Press, 2007: 165-170.
[20] 贾慧星,章毓晋.基于梯度方向直方图特征的多核跟踪[J].自动化学报,2009,35(10):1283-1289.Jia H X, Zhang Y J. Multiple kernels based object tracking using histograms of oriented gradients[J]. Acta Automatica Sinica, 2009, 35(10): 1283-1289.