Abstract:A new Honeycomb PneuNets (HPN) soft gripper and its grasp strategy are proposed. The theoretical model of the soft gripper has infinite degrees of freedom, so it can fit the surface of the objects completely. In order to calculate the final grasp state, the grasp process is simulated at every selected grasp point according to the characteristics of motion and grasp. For every final grasp state, the decision point is taken to get the feasible solution set using the relative form closure theory. For each feasible solution, the evaluation function for the HPN soft gripper is calculated. Then the best solution is selected to get the best grasp plan. The experimental results show that the new soft gripper and its grasp strategy can greatly improve the grasp success rate on common geometrical objects.
[1] Roa M A, Suárez R. Grasp quality measures: Review and performance[J]. Autonomous Robots, 2015, 38(1): 65-88.
[2] 夏群峰,彭勇刚.基于视觉的机器人抓取系统应用研究综述 [J].机电工程,2014,31(6):697-701,710.Xia Q F, Peng Y G. Review on application research of robots scraping system based on visual[J]. Mechanical & Electrical Engineering Magazine, 2014, 31(6): 697-701,710.
[3] 王志恒,钱少明,杨庆华,等.气动机器人多指灵巧手——ZJUT Hand[J].机器人,2012,34(2):223-230.Wang Z H, Qian S M, Yang Q H, et al. Pneumatic robot multi-fingered dexterous hand- ZJUT Hand[J]. Robot, 2012, 34(2): 223-230.
[4] 郑俊君,宋小波,姜祖辉,等.一种气动静压软体机器人的驱动力产生机理及控制策略[J].机器人,2014,36(5):513-518.Zheng J J, Song X B, Jiang Z H, et al. The driving force mechanism and control strategy of a pneumatic hydrostatic soft robot[J]. Robot, 2014, 36(5): 513-518.
[5] 刘赵龙,焦志伟,张莉彦,等.电磁力致动软体机器人气囊结构力学特性的研究[J].制造业自动化,2015,37(11):46-48,52.Liu Z L, Jiao Z W, Zhang Y L, et al. The exploration of mechanical properties of the airbag in soft robots actuating by electromagnetic force[J]. Manufacturing Automation, 2015, 37(11): 46-48,52.
[6] 费燕琼,吕海洋,沈星尧.模块化软体机器人运动模式[J].上海交通大学学报,2013,47(12):1870-1873.Fei Y Q, Lv H Y, Shen X Y. Moving mode of modular soft robot[J]. Journal of Shanghai Jiaotong University, 2013, 47(12): 1870-1873.
[7] 王龙,喻俊志,胡永辉,等.机器海豚的机构设计与运动控制[J].北京大学学报:自然科学版,2006,42(3):294-301.Wang L, Yu J Z, Hu Y H, et al. Mechanism design and motion control of robotic dolphin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(3): 294-301.
[8] 王振龙,杭观荣,李健,等.面向水下无声推进的形状记忆合金丝驱动柔性鳍单元[J].机械工程学报,2009,45(2):126-131.Wang Z L, Hang G R, Li J, et al. Shape memory alloy wire actuated flexible biomimetic fin for quiet underwater propulsion[J]. Journal of Mechanical Engineering, 2009, 45(2): 126-131.
[9] 焦志伟,程祥,张罗,等.电磁力致动的新型软体机器人[J].制造业自动化,2013,35(11):58-61.Jiao Z W, Cheng X, Zhang L, et al. A new kind of soft robots actuating by electromagnetic force[J]. Manufacturing Automation, 2013, 35(11): 58-61.
[10] Ilievski F, Mazzeo A D, Shepherd R F, et al. Soft robotics for chemists[J]. Angewandte Chemie, 2011, 50(8): 1890-1895.
[11] Li T F, Keplinger C, Baumgartner R, et al. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(2): 611-628.
[12] Samatham R, Kim K J, Dogruer D, et al. Active polymers: An overview[M]//Electroactive Polymers for Robotic Applications. Berlin, Germany: Springer, 2007: 1-36.
[13] Chou C P, Hannaford B. Measurement and modeling ofMcKibben pneumatic artificial muscles[J]. IEEE Transactions on Robotics and Automation, 1996, 12(1): 90-102.
[14] Cho K J, Koh J S, Kim S, et al. Review of manufacturing processes for soft biomimetic robots[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(3): 171-181.
[15] Sun H, Chen X P. Towards Honeycomb PneuNets robots[M]//Robot Intelligence Technology and Applications 2. Berlin, Germany: Springer, 2014: 331-340.
[16] Farrow N, Correll N. A soft pneumatic actuator that can sense grasp and touch[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2015: 2317-2323.
[17] Homberg B S, Katzschmann R K, Dogar M R, et al. Haptic identification of objects using a modular soft robotic gripper[C] //IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2015: 1698-1705.
[18] 熊有伦.点接触约束理论与机器人抓取的定性分析[J].中 国科学:A 辑,1994,24(8):874-883. Xiong Y L. Point contact constraint theory and qualitative analysis of robot grasping[J]. Science in China: Series A, 1994, 24(8): 874-883.
[19] 樊绍巍,陈川,姜力,等.类人型五指手构型的优化设计[J].哈尔滨工程大学学报,2014,35(5):602-606. Fan S W, Chen C, Jiang L, et al. Optimized design for the fivefinger hand configuration[J]. Journal of Harbin Engineering University, 2014, 35(5): 602-606.
[20] 骆敏舟,梅涛,卢朝洪.多用途欠驱动手爪的自主抓取研 究[J].机器人,2005,27(1):20-25,30. Luo M Z, Mei T, Lu H C. Research on autonomous grasp for the versatile underactuated robot hand[J]. Robot, 2005, 27(1): 20-25,30.
[21] 文双全,吴铁军.多边形物体带摩擦抓取的最优规划算 法[J].机械工程学报,2010,46(23):45-52. Wen S Q,Wu T J. Optimal planning algorithm for polygonal object grasping with frictional contacts[J]. Journal of Mechanical Engineering, 2010, 46(23): 45-52.
[22] 陈金宝,韩冬,王小涛,等.灵巧机械手多指协调控制技 术[J].机械工程学报,2014,50(5):42-47. Chen J B, Han D, Wang X T, et al. Multi-fingered coordinated control for dexterous robotic hand[J]. Journal of Mechanical Engineering, 2014, 50(5): 42-47.
[23] Mishra B, Schwartz J T, Sharir M. On the existence and synthesis of multifinger positive grips[J]. Algorithmica, 1987, 2(4): 541-558.
[24] Chinellato E, Morales A, Fisher R B, et al. Visual quality measures for characterizing planar robot grasps[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2005, 35(1): 30-41.
[25] Dollar A M, Howe R D. The highly adaptive SDM hand: Design and performance evaluation[J]. International Journal of Robotics Research, 2010, 29(5): 585-597.
[26] Le Q V, Kamm D, Kara A F, et al. Learning to grasp objects with multiple contact points[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2010: 5062-5069.
[27] 张庭,姜力,刘宏.仿生假手抓握力控制策略[J].机器人, 2012,34(2):190-196. Zhang T, Jiang L, Liu H. A grasping force control strategy for anthropomorphic prosthetic hand[J]. Robot, 2012, 34(2): 190- 196.