Abstract:In order to resolve the autonomous flying control problem of a small unmanned helicopter, a design method for fast-optimization robust H∞ controller is presented based on helicopter hovering model, and a double-closed-loop flying controller based on reduced-order observer is designed. The inner-loop controller uses H∞ robust technology for helicopter flight attitude control, and the outer-loop controller uses PD (proportional-derivative) technology for the helicopter displacement control. The proposed controller is applied to the flight control system of an independently developed miniature helicopter, and the fully autonomous fixed-point hovering flight is realized in interference environment. Experiments demonstrate the effectiveness and robustness of the proposed control approach.
[1] Ren B, Ge S S, Chen C, et al. Modeling, control and coordination of helicopter systems[M]. New York, USA: Springer, 2012: 20-64.
[2] Kunz K, Huck S M, Summers T H. Fast model predictive control of miniature helicopters[C]//2013 European Control Conference. Piscataway, USA: IEEE, 2013: 1377-1382.
[3] van den Berg J. Iterated LQR smoothing for locally-optimal feedback control of systems with non-linear dynamics and non-quadratic cost[C]//American Control Conference. Piscataway, USA: IEEE, 2014: 1912-1918.
[4] 白永强,刘昊,石宗英,等.四旋翼无人直升机鲁棒飞行控制[J].机器人,2012,34(5):519-524.Bai Y Q, Liu H, Shi Z Y, et al. Robust flight control of quadrotor unmanned air vehicles[J]. Robot, 2012, 34(5): 519-524.
[5] 夏青元,徐锦法,张梁.无人旋翼飞行器自适应飞行控制系统设计与仿真[J].机器人,2013,35(1):98-106.Xia Q Y, Xu J F, Zhang L. Design and simulation of an adaptive flight control system for unmanned rotorcraft[J]. Robot, 2013, 35(1): 98-106.
[6] Song D L, Han J D, Liu G J. Active model-based predictive control and experimental investigation on unmanned helicopters in full flight envelope[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1502-1509.
[7] Pounds P E I, Dollar A M. Stability of helicopters in compliant contact under PD-PID control[J]. IEEE Transactions on Robotics, 2014, 30(6): 1472-1486.
[8] Mollov L, Kralev J, Slavov T, et al. μ-synthesis and hardware-in-the-loop simulation of miniature helicopter control system[J]. Journal of Intelligent & Robotic Systems, 2014, 76(2): 315-351.
[9] 陈虹,韩光信,刘志远.基于 LMI 的约束系统 H∞ 控制及其滚动优化实现[J].控制理论与应用,2005,22(2):l89-l95.Chen H, Han G X, Liu Z Y. LMI-based H-infinity control scheme for constrained systems and its moving horizon implementation[J]. Control Theory & Applications, 2005, 22(2): l89-l95.
[10] 何国军,蒋静萍.一类非线性系统的自适应与 L2-增益混合控制[J].控制理论与应用,1999,16(2):169-172.He G J, Jiang J P. Hybrid control of L2-gain analysis incorporated with adaptive control for a class of nonlinear systems[J]. Control Theory & Applications, 1999, 16(2): 169-172.
[11] Mirzaei M, Eghtesad M, Alishahi M M. A new robust fuzzy method for unmanned flying vehicle control[J]. Journal of Central South University, 2015, 22(6): 2166-2182.
[12] Lee C T, Tsai C C. Nonlinear adaptive aggressive control using recurrent neural networks for a small scale helicopter[J]. Mechatronics, 2010, 20(4): 474-484.
[13] Sandino L A, Bejar M, Kondak K, et al. Improving hovering performance of tethered unmanned helicopters with nonlinear control strategies[C]//International Conference on Unmanned Aircraft Systems. Piscataway, USA: IEEE, 2013: 443-452.
[14] Zhao B, Xian B, Zhang Y, et al. Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2891-2902.
[15] Wang X F, Chen Y, Lu G, et al. Robust attitude tracking control of small-scale unmanned helicopter[J]. International Journal of Systems Science, 2015, 46(8): 1472-1485.
[16] Chen B M. Robust and H∞ control[M]. London, UK: Springer, 2000.
[17] Peng K M, Cai G W, Chen B M, et al. Design and implementation of an autonomous flight control law for a UAV helicopter[ J]. Automatica, 2009, 45(10): 2333-2338.