Parameter Identification and Calibration of D-H Model for 6-DOF Serial Robots
ZHANG Xu1,2,3, ZHENG Zelong1, QI Yong1
1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China;
2. Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai 200072, China;
3. State Key Laboratory of Mechanical System and Vibration, Shanghai 200240, China
Abstract:This paper intends to improve the absolute accuracy of the end-effector of serial robot. Firstly, the axis measurement method is used to identify the D-H (Denavit-Hartenberg) model parameters, and the D-H model parameters are transformed into the complete, minimal and model-continuous kinematic (CMMK) model parameters. Then, the parameters are optimized by the nonlinear method to solve the non-convergence problem of nonlinear optimization, which is caused by the singularity and redundancy of the D-H parameter model. Finally, the optimized CMMKmodel parameters are transformed into the industrial D-H model parameters, according to which the theoretical D-H parameter model is modified to accomplish high-accuracy calibration and position control. In experiments on MOTOMAN-MH80 robot, the robotic link parameters are effectively identified with the proposed method, and the positioning error decreases from 2 mm to 0.7 mm after calibration, ithe positioning accuracy is improved by about 70%. The proposed method can be used in more cases comparing with the kinematic loop method, because it obtains initial values of robot model parameters by axis measurement method and avoids the theoretical modeling process. Plus, problems of singularity, discontinuity and non-convergence of D-H model are solved effectively through the CMMK model based calibration.
[1] 邓永刚.工业机器人重复定位精度与不确定度研究[D].天津:天津大学,2014.Deng Y G. Research on the repeatability and uncertainty of industrial robots[D]. Tianjin: Tianjin University, 2014.
[2] Nubiola A, Bonev I A. Absolute robot calibration with a single telescoping ballbar[J]. Precision Engineering, 2014, 38(3): 472-480.
[3] Shiakolas P S, Conrad K L, Yih T C. On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots[J]. International Journal of Modelling and Simulation, 2002, 22(4): 245-254.
[4] Nubiola A. Calibration of a serial robot using a laser tracker[D]. Montreal, Canada: École de Technologie Supérieure, 2011.
[5] Xuan J Q, Xu S H. Review on kinematics calibration technology of serial robots[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(8): 1759-1774.
[6] Nubiola A, Bonev I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1): 236-245.
[7] Schröer K, Albright S L, Grethlein M. Complete, minimal and model-continuous kinematic models for robot calibration[J]. Robotics and Computer-Integrated Manufacturing, 1997, 13(1): 73-85.
[8] Hollerbach J M, Wampler C W. The calibration index and taxonomy for robot kinematic calibration methods[J]. International Journal of Robotics Research, 1996, 15(6): 573-591.
[9] Wu Y Q, Li C, Li J, et al. Comparative study of robot kinematic calibration algorithms using a unified geometric framework[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2014: 1393-1398.
[10] 龚星如,沈建新,田威,等.工业机器人的绝对定位误差模型及其补偿算法[J].南京航空航天大学学报,2012,44(z1):60-64.Gong X R, Shen J X, Tian W, et al. Absolute positioning error model of industrial robot and compensation algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(z1): 60-64.
[11] Ginani L S, Motta J M S T. Theoretical and practical aspects of robot calibration with experimental verification[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2011, 33(1): 15-21.
[12] 奚陶.工业机器人运动学标定与误差补偿研究[D].武汉:华中科技大学,2012.Xi T. Research on kinematic calibration and error compensation of industrial robot[D]. Wuhan:Huazhong University of Science & Technology, 2012
[13] 解则晓,辛少辉,李绪,等.基于单目视觉的机器人标定方法[J].机械工程学报,2011,47(5):35-39.Jie Z X, Xin S H, Li X, et al. Method of robot calibration based on monocular vision[J]. Journal of Mechanical Engineering, 2011, 47(5): 35-39.
[14] Simon A, Ortiz E L. Mathematics and social Utopias in France: Olinde Rodrigues and his times[M]. Providence, USA: American Mathematical Society, 2006.
[15] Denavit J, Hartenberg R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. Transactions of the ASME Journal of Applied Mechanics, 1955, 22: 215-221.
[16] Zhang X, Zhang J, Liao L. An adaptive trust region method and its convergence[J]. Science in China, Series A: Mathematics, 2002, 45(5): 620-631.