3D Pedestrian Trajectory Tracking Based on Inertial/Magnetic Sensors
ZHENG Wei, PENG Gang
Key Laboratory of Education Ministry for Image Processing and Intelligent Control, School of Automation, Huazhong University of Science and Technology, Wuhan 430070, China
Abstract:To achieve 3D pedestrian trajectory tracking, a navigation block tied to the walkers' shoes is used, which combines inertial measurement unit (IMU) and electronic compass to track pedestrian trajectory. Regarding the characteristics of pedestrian movement cycle, an improved Attitude and Heading Reference System (AHRS) algorithm with quaternion is considered to accurately estimate the walking attitude, and especially the heading. After analyzing kinds of reasons for velocity errors, a new zero velocity updata algorithm is developed. Height compensation is realized through judging pedestrian walking state according to the vertical walking speed, and thus 3D pedestrian trajectory is accurately tracked. Some experiments are conducted to demonstrate the effectiveness and feasibility of the proposed method, including straight line round-trip walking, rectangle line walking, and walking up-and-down stairs. In the experiments, the deviation of the 2D trajectory is about 0.5 m and the deviation of the 3D trajectory is about 1 m.
[1] Yun X P, Bachmann E R, Moore H, et al. Self-contained position tracking of human movement using small inertial/magnetic sensor modules[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2007: 2526-2533.
[2] 张金亮,秦永元,梅春波.基于 MEMS 惯性技术的鞋式个人导航系统[J].中国惯性技术学报,2011,19(3):253-256.Zhang J L, Qin Y Y, Mei C B. Shoe-mounted personal navigation system based on MEMS inertial technology[J]. Journal of Chinese Inertial Technology, 2011, 19(3): 253-256.
[3] Leppakoski H, Collin J, Takala J. Pedestrian navigation based on inertial sensors, indoor map, and WLAN signals[J]. Journal of Signal Processing Systems for Signal Image and Video Technology, 2012, 71(3): 287-296.
[4] 于飞,白红美,高伟,等.步幅和建筑方向辅助的行人导航算法[J].哈尔滨工程大学学报,2016(3):408-413.Yu F, Bai H M, Gao W, et al. Stride and building heading aided algorithm for pedestrian navigation[J]. Journal of Harbin Engineering University, 2016(3): 408-413.
[5] 王普,潘凯,任明荣,等.基于伪自适应阈值零速检测法的室内个人导航系统[J].北京工业大学学报,2015(9):1308-1313.Wang P, Pan K, Ren M R, et al. Indoor personal navigation system based on zero velocity detection of pseudo adaptive threshold[J]. Journal of Beijing University of Technology, 2015(9): 1308-1313.
[6] 童长胜,张风登.一种基于 IMU 的 3D 位置追踪算法[J].电子测量技术,2015,38(4):70-73.Tong C S, Zhang F D. 3D position tracking algorithm based on IMU[J]. Electronic Measurement Technology, 2015, 38(4): 70-73.
[7] 汪少初.基于 PDR 的定位与跟踪技术研究及系统设计[D].天津大学,2014.Wang S C. Research on the technologies of personnel positioning and tracking and system design based on PDR[D]. Tianjin: Tianjin University, 2014
[8] Madgwick S O H, Harrison A J L, Vaidyanathan R. Estimation of IMU and MARG orientation using a gradient descent algorithm[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2011.
[9] 田增山,张媛.基于智能手机 MARG 传感器的行人导航算法[J].重庆邮电大学学报:自然科学版,2014,26(2):223-227.Tian Z S, Zhang Y. Pedestrian navigation algorithm based on the smart phone MARG sensors[J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition, 2014, 26(2): 223-227.
[10] 赵欣,王仕成,杨东方,等.一种改进的高动态捷联惯导解算算法[J].中国惯性技术学报,2011,19(2):163-169.Zhao X, Wang S C, Yang D F, et al. Improved algorithm for high dynamic strapdown inertial navigation system[J]. Journal of Chinese Inertial Technology, 2011, 19(2): 163-169.
[11] Munoz Diaz E, de Ponte Muller F, Jimenez A R, et al. Evaluation of AHRS algorithms for inertial personal localization in industrial environments[C]//IEEE International Conference on Industrial Technology. Piscataway, USA: IEEE, 2015: 3412-3417.
[12] Premerlani W, Bizard P. Direction cosine matrix IMU: Theory[DB/OL]. [2009-05-17]. http://gentlenav. googlecode. com/files/DCMDraft2.pdf.
[13] Euston M, Coote P, Mahony R, et al. A complementary filter for attitude estimation of a fixed-wing UAV[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2008: 340-345.
[14] 高钟毓,王进,董景新,等.惯性测量系统零速修正的几种估计方法[J].中国惯性技术学报,1995(2):24-29.Gao Z Y, Wang J, Dong J X, et al. A comparison of ZUPT estimation methods for inertial survey system[J]. Journal of Chinese Inertial Technology, 1995(2): 24-29.
[15] Zheng L X, Zhou W C, Tang W W, et al. A 3D indoor positioning system based on low-cost MEMS sensors[J]. Simulation Modelling Practice and Theory, 2016, 65: 45-56.