Tracking Control Method for Suspended Floater Based on Time Integral of Disturbance Force
ZOU Shengyu1,2, LIU Zhen1, GAO Haibo1, DING Liang1, LI Nan1, DENG Zongquan1
1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China;
2. China Aerodynamics Research & Development Center, Mianyang 621000, China
邹胜宇, 刘振, 高海波, 丁亮, 李楠, 邓宗全. 基于干扰力时间积分的悬吊漂浮物随动控制方法[J]. 机器人, 2015, 37(1): 1-8,16.DOI: 10.13973/j.cnki.robot.2015.001.
ZOU Shengyu, LIU Zhen, GAO Haibo, DING Liang, LI Nan, DENG Zongquan. Tracking Control Method for Suspended Floater Based on Time Integral of Disturbance Force. ROBOT, 2015, 37(1): 1-8,16. DOI: 10.13973/j.cnki.robot.2015.001.
A disturbance force tracking control method is proposed for the satellite weightless simulator of 6 degrees of freedom, to eliminate the interference between the simulator and the suspended floating objects. Firstly, a control strategy is presented, in which the values of the time integral, proportional and time differential terms of the swing angle of the suspension wire are used to characterize the impulse interference from the compensation system, the position tracking error and the velocity tracking error respectively, and the three values should converge to zero. The control models are then established, including a 3-dimensional dynamic model of the suspension module and a 2-dimensional linear model for control, and the latter is obtained according to the symmetry and decoupling characteristics of the simplified 3-dimensional model. The structure of tracking control system is constructed by regulating the swing angle of the suspension wire, and a regulation controller based on classic control theory is designed. In addition, a velocity feedback is introduced into the control model to avoid resonance in the control bandwidth. The simulation results indicate that the zero-gravity simulation system is capable of tracking a floating object rapidly, and during that process, the simulator imposes zero impulse interference on the floating object. The feasibility and effectiveness of the control strategy and the controller are verified.
[1] Kemurdjian A, Khakhanov U A. Development of simulation means for a gravity forces[C]//Aerospace Division of the ASCE. Robotics 2000. Albuquerque, USA: ASCE, 2000: 220-225.[2] 齐乃明,张文辉,高九州,等.空间微重力环境地面模拟试验方法综述[J].航天控制,2011,29(3): 95-100.Qi N M, Zhang W H, Gao J Z, et al. The primary discussion for the ground simulation system of spatial microgravity[J]. Aerospace Control, 2011, 29(3): 95-100.[3] Chen C I, Chen Y T, Wu S C, et al. Experiment and simulation in design of the board-level drop testing tower apparatus[J]. Experimental Techniques, 2012, 36(2): 60-69. [4] Qu B, Wang Q, Wang H P, et al. Zero-g aircraft flight method research[J]. Flight Dynamics, 2007, 25(2): 65-67.[5] Gernhardt M, MacNeil K, Marinova M, et al. Underwater environment used to simulate moon's gravity in development of nextgeneration spacesuit[OL]. [2013-05-07]. http://research.jsc. nasa.gov/BiennialResearchReport/PDF/EA-1.pdf.[6] 刘振.星球车单吊索重力补偿与实验研究[D].哈尔滨:哈尔滨工业大学,2013.Liu Z. Low gravity simulation for planetary rovers and experimental researches[D]. Harbin: Harbin Institute of Technology, 2013.[7] 刘巍,张磊,赵维.载人低重力模拟技术现状与研究进展[J].航天医学与医学工程,2012,25(6):463-468.Liu W, Zhang L, Zhao W. Current situation and research progress of low gravity simulation[J]. Space Medicine & Medical Engineering, 2012, 25(6): 463-468.[8] Nalley M J, Trabia M B. Control of overhead cranes using a fuzzy logic controller[J]. Journal of Intelligent and Fuzzy Systems, 2000, 8(1): 1-18.[9] Lee H H. Modeling and control of a three-dimensional overhead crane[J]. American Society of Mechanical Engineers Journal of Dynamic Systems, Measurement, and Control, 1998, 120(4): 471-476. [10] Mahfouf M, Kee C H, Abbod M F, et al. Fuzzy logic-based anti-sway control design for overhead cranes[J]. Neural Computing & Applications, 2000, 9(1): 38-43. [11] Sato Y, Ejiri A, Iida Y, et al. Micro-G emulation system using constant-tension suspension for a space manipulator[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 1991: 1893-1900.[12] White G C, Xu Y S. An active vertical-direction gravity compensation system[J]. IEEE Transactions on Instrumentation and Measurement, 1994, 43(46): 786-792.[13] NASA. Active response gravity offload system[EB/OL]. [2012-08-30]. http://www.nasa.gov/centers/johnson/engineering/integrated/_environments/active/_response/_gravity/.[14] 姚燕生.3维重力补偿方法与空间浮游目标模拟实验装置研究[D].合肥:中国科学技术大学,2006.// Yao Y S. Research on 3D gravity compensation and equipment of space floating objective simulation[D]. Hefei: University of Science and Technology of China, 2006.[15] 姚燕生,梅涛,Liu Ming,等.悬挂式重力补偿系统精密跟踪方法[J].哈尔滨工业大学学报,2009,41(11):205-208.// Yao Y S, Mei T, Liu M, et al. Precision tracking method in suspension system for gravity compensation[J]. Journal of Harbin Institute of Technology, 2009, 41(11): 205-208.[16] 林旭梅.基于小脑模型的智能控制方法及其在重力补偿系统中的应用[D].合肥:中国科学技术大学,2006.// Lin X M. Intelligent control method based on CMAC theory and its application on microgravity compensation system[D]. Hefei: University of Science and Technology of China, 2006.[17] 孟瑶.巡视器地面六分之一重力模拟中的控制研究[D].哈尔滨:哈尔滨工业大学,2010.// Meng Y. The study of control system design on lunar gravity simulator in an earth gravity environment[D]. Harbin: Harbin Institute of Technology, 2010.[18] 刘延柱.高等动力学[M].北京:高等教育出版社,2010:4-30.// Liu Y Z. Advanced dynamics[M]. Beijing: Higher Education Press, 2010: 4-30.[19] 梅晓榕.自动控制原理[M].北京:科学出版社,2007:112-176.// Mei X R. Autocontrol theory[M]. Beijing: Science Press, 2007: 112-176.[20] 王广雄,何朕.控制系统设计[M].北京:清华大学出版社,2008:36-175.// Wang G X, He Z. Control system design[M]. Beijing: Tsinghua University Press, 2008: 36-175.