Abstract:A new variable stiffness joint actuator is proposed by using a plate spring as elastic element and spiral discs as stiffness adjusting mechanism, and the stiffness regulation characteristics of the joint actuator are also discussed. A dynamic model considering the compliance and friction characteristics of the motor, synchronous belt and harmonic reducer is established. The correctness of the dynamic model is verified by position step and ball-hitting experiments. The research shows that the explosion of variable stiffness joint actuator is related to not only the stiffness but also the release time of stored energy, which provides a theoretical basis for improving the robot's dynamic characteristics when interacting with human.
[1] 何玉庆,赵忆文,韩建达,等.与人共融——机器人技术发展的新趋势[J].机器人产业,2015(5):74-80.He Y Q, Zhao Y W, Han J D, et al. Co-existence with humans-The new trend of robot technology development[J]. Robot Industry, 2015(5):74-80.
[2] Albu-Schäffer A, Bicchi A. Actuators for soft robotics[M]//Springer Handbook of Robotics. Berlin, Germany:Springer, 2016:499-530.
[3] Groothuis S S, Rusticelli G, Zucchelli A, et al. The variable stiffness actuator vsaUT-Ⅱ:Mechanical design, modeling, and identification[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2):589-597.
[4] Jafari A, Tsagarakis N G, Sardellitti I, et al. A new actuator with adjustable stiffness based on a variable ratio lever mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1):55-63.
[5] Groothuis S S, Carloni R, Stramigioli S. Single motor-variable stiffness actuator using bistable switching mechanisms for independent motion and stiffness control[C]//IEEE International Conference on Advanced Intelligent Mechatronics. Piscataway, USA:IEEE, 2016:234-239.
[6] 尹鹏,李满天,郭伟,等.面向足式机器人的新型可调刚度柔性关节的设计及性能测试[J].机器人,2014,36(3):322-329.Yin P, Li M T, Guo W, et al. Design and testing of a novel joint with adjustable stiffness for legged robot[J]. Robot, 2014, 36(3):322-329.
[7] 王颜,房立金.机械式仿骨骼肌变刚度机构原理及设计[J].机器人,2015,37(4):506-512.Wang Y, Fang L J. Principle and design of mechanically musculoskeletal variable-stiffness mechanism[J]. Robot, 2015, 37(4):506-512.
[8] Mancini M, Grioli G, Catalano M G, et al. Passive impedance control of a multi-DOF VSA-Cubebot manipulator[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:3335-3340.
[9] Sardellitti I, Medrano-Cerda G, Tsagarakis N G, et al. A position and stiffness control strategy for variable stiffness actuators[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:2785-2791.
[10] Sardellitti I, Medrano-Cerda G A, Tsagarakis N, et al. Gain scheduling control for a class of variable stiffness actuators based on lever mechanisms[J]. IEEE Transactions on Robotics, 2013, 29(3):791-798.
[11] Zhakatayev A, Rubagotti M, Varol H A. Closed-loop control of variable stiffness actuated robots via nonlinear model predictive control[J]. IEEE Access, 2015, 3:235-248.
[12] Pratt G A, Williamson M M. Series elastic actuators[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems Piscataway, USA:IEEE, 1995:399-406.
[13] Tagliamonte N L, Sergi F, Accoto D, et al. Double actuation architectures for rendering variable impedance in compliant robots:A review[J]. Mechatronics, 2012, 22(8):1187-1203.
[14] Tsagarakis N G, Laffranchi M, Vanderborght B, et al. A compact soft actuator unit for small scale human friendly robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2009:4356-4362.
[15] Wolf S, Hirzinger G. A new variable stiffness design:Matching requirements of the next robot generation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2008:1741-1746.
[16] Wolf S, Grioli G, Eiberger O, et al. Variable stiffness actuators:Review on design and components[J]. IEEE/ASME Transactions on Mechatronics, 2015, 21(5):2418-2430.
[17] Schiavi R, Grioli G, Sen S, et al. VSA-Ⅱ:A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2008:2171-2176.
[18] Ikuta K, Ishii H, Nokata M. Safety evaluation method of design and control for human-care robots[J]. International Journal of Robotics Research, 2003, 22(5):281-297.
[19] Wolf S, Bahls T, Chalon M, et al. Soft robotics with variable stiffness actuators:Tough robots for soft human robot interaction[M]//Soft Robotics. Berlin, Germany:Springer, 2015:231-254.
[20] López-Martínez J, García-Vallejo D, Torres J L, et al. Role of link flexibility and variable stiffness actuator on collision safety for service robots[M]//New Trends in Mechanism and Machine Science. Berlin, Germany:Springer, 2013:499-507.
[21] Kim B S, Park J J, Song J B. Double actuator unit with planetary gear train for a safe manipulator[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2007:1146-1151.
[22] Park J J, Lee Y J, Song J B, et al. Safe joint mechanism based on nonlinear stiffness for safe human-robot collision[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2008:2177-2182.
[23] Park J J, Song J B. Safe joint mechanism using inclined link with springs for collision safety and positioning accuracy of a robot arm[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2010:813-818.
[24] Kim B S, Song J B. Design and control of a variable stiffness actuator based on adjustable moment arm[J]. IEEE Transactions on Robotics, 2012, 28(5):1145-1151.
[25] Choi J, Hong S, Lee W, et al. A robot joint with variable stiffness using leaf springs[J]. IEEE Transactions on Robotics,2011, 27(2):229-238.
[26] Garabini M, Passaglia A, Belo F, et al. Optimality principles in stiffness control:The VSA kick[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:3341-3346.
[27] Kim B S, Song J B. Hybrid dual actuator unit:A design of a variable stiffness actuator based on an adjustable moment arm mechanism[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2010:1655-1660.
[28] Vejdani H R, Hurst J W. Optimal passive dynamics for physical interaction:Throwing a mass[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2013:796-801.
[29] Roozing W, Li Z, Medrano-Cerda G A, et al. Development and control of a compliant asymmetric antagonistic actuator for energy efficient mobility[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2):1080-1091.
[30] Velasco A, Garabini M, Catalano M G, et al. Soft actuation in cyclic motions:Stiffness profile optimization for energy efficiency[C]//IEEE-RAS International Conference on Humanoid Robots. Piscataway, USA:IEEE, 2015:107-113.