1. Research Centre of Mechanical & Electrical Technology, Zhejiang Normal University, Jinhua 321019, China; 2. College of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, China; 3. College of Vocational Technology, Zhejiang Normal University, Jinhua 321019, China
周武, 赵春霞, 沈亚强, 张棉好. 基于全局观测地图模型的SLAM研究[J]. 机器人, 2010, 32(5): 647-654..
ZHOU Wu, ZHAO Chunxia, SHEN Yaqiang, ZHANG Mianhao. SLAM Research Based on Global Observation Map Model. ROBOT, 2010, 32(5): 647-654..
摘要在SLAM领域中,为了克服稀疏特征地图不能提供详尽环境信息的缺点,从观测信息的物理意义出发,提出了全局观测地图模型.其基本思想是在稀疏特征地图中嵌入全局密集地图信息,采用位移准则、特征准则和传感器量程准则提取必要的观测信息,然后对观测信息进行去噪、转换,接着根据观测信息的物理意义和机器人位姿估计的不确定性获取环境的全局密集地图,可视化后得到环境的二值地图、灰度地图或颜色地图.将全局观测地图模型与EKF-SLAM算法相结合,提出了GOE-SLAM算法,采用Car Park Dataset对GOE-SLAM进行了实验验证,结果表明GOE-SLAM生成了可信的密集地图,并且GOE-SLAM的计算复杂度与EKF-SLAM相当.
Abstract:To solve the shortcoming of SLAM(simultaneous localization and mapping) that the sparse feature map fails to provide full information about the environment,global observation map model(GOMM) is proposed according to physical meanings of the observations.In GOMM,global dense map information is embedded into sparse feature map,and necessary observations are selected with displacement rule,feature rule,and sensory limit rule.After that,the selected observations are denoised and transformed.Then,global dense map of the environment is built according to physical meanings of the observations and uncertainty of the robotic pose estimation.Monochrome map,gray scale map,or color map of the environment is obtained after visualization.By combining GOMM with EKF-SLAM(extended Kalman filter SLAM),an algorithm named GOE-SLAM(global observation EKF-SLAM) is put forward.Experiments with "Car Park Dataset" are carried out to evaluate the performance of GOE-SLAM.Experimental results indicate that a reliable dense map is built with GOE-SLAM, and the computational complexity of GOE-SLAM is nearly equal to that of EKF-SLAM.
[1] Smith R C,Cheeseman P.On the representation and estimation of spatial uncertainty[J]. International Journal of Robotics Research,1986,5(4):56-68.
[2] Durrant-Whyte H F.Uncertain geometry in robotics[J]. IEEE Journal of Robotics and Automation,1988,4(1):23-31.
[3] Smith R C,Self M,Cheeseman P.Estimating uncertain spatial relationships in rnbotics[M]//Autonomous Robot Vehicles.New York,USA:Springer-Verlag,1990:167-193.
[4] Jose E,Adams M D.Millimetre wave radar spectra simulation and interpretation for outdoor SLAM[C]//IEEE International Conference on Robotics and Automation.Piscataway,NJ,USA:IEEE,2004:1321-1326.
[5] Montemerlo M,Thrun S.A multi-resolution pyramid for outdoor robot terrain perception[C]//AAAI National Conference on Artificial Intelligence.Menlo Park,CA,USA:AAAI,2004:464-469.
[6] Guivant J,Nebot E M.Optimization of the simultaneous localization and map-building algorithm for real-time implementation[J]. IEEE Transactions on Robotics and Automation,2001,17(3):242-257.
[7] Montemerlo M,Thrun S,Koller D,et al.FastSLAM 2.0:An improved particle filtering algorithm for simultaneous localization and mapping that provably converges[C]//International Conference on Artificial Intelligence.USA:IJCAI,2003:1151-1156.
[8] Wijesoma W S,Perera L D L,Adams M D.Toward multidimensional assignment data association in robot localization and mapping[J]. IEEE Transactions on Robotics,2006,22(2):350-365.
[9] Asadi E,Bozorg M.A decentralized architecture for simultaneous localization and mapping[J]. IEEE/ASME Transactions on Mechatronics,2009,14(1):64-71.
[10] 梁志伟,马旭东,戴先中,等.基于分布式感知的移动机器人同时定位与地图创建[J]. 机器人,2009,31(1):33-39.Liang Zhiwei,Ma Xudong,Dai Xianzhong,et al.Distributedperception-based simultaneous localization and mapping for mobile robots[J]. Robot,2009,31(1):33-39.
[11] Andreasson H,Duckett T,Lilianthal A J.A minimalistic approach to appearance-based visual SLAM[J]. IEEE Transactions on Robotics,2008,24(5):991-1001.
[12] Kaess M,Ranganathan A,Dellaert F.iSAM:Incremental smoothing and mapping[J]. IEEE Transactions on Robotics,2008,24(6):1365-1378.
[13] Nieto J,Guivant J,Nebot E.DenseSLAM:Simultaneous localization and dense mapping[J]. International Journal of Robotics Research,2006,25(8):711-744.
[14] 季秀才,郑志强,张辉.SLAM问题中机器人定位误差分析与控制[J]. 自动化学报,2008,34(3):323-330.Ji Xiucai,Zheng Zhiqiang,Zhang Hui.Analysis and control of robot position error in SLAM[J]. Acta Automatica Sinica,2008,34(3):323-330.
[15] Kim C,Sakthivel R,Chung W K.Unscented FastSLAM:A robust algorithm for the simultaneous localization and mapping problem[C]//IEEE International Conference on Robotics and Automation.Piscataway,NJ,USA:IEEE,2007:2439-2445.
[16] Neira J,Tardos J D.Data association in stochastic mapping using the joint compatibility test[J]. IEEE Transactions on Robotics and Automation,2001,17(6):890-897.
[17] SLAM summer school.Summer school on"simultaneous localisation and mapping"[EB/OL]. [2009-09-29]. http://www.cas.kth.se/SLAM/.