Abstract:This paper reviews the developed situations of learning based intelligent robotic actions planning andremarks their corresponding fundamentals and realization systems.
[1] Fikcs R E et al. Learning and executing generalized robot plans. Artificial Intelligence, 1972;3:251-288
[2] Minton S et al. Explanation-based learning:a problem solving perspective. Artificial Intelligence, 1989;40:63-118
[3] Minton S. Quantitaiivc rcsulls concerning the utility of explanation-based learning. Artificial Intelligence, 1990;42:363-391
[4] Scgrc A M, Dcjong G. Explanation-based manipulator learning:acquisition of planning ability through observation. In:Proc of IEEE Int Conf on Robotics and Auiomation, St Louis, Missouri, USA, 1985:555-560
[5] Tangwongsan S, Fu K S. An application of learning to robotic planning. Int J of Comput and Inf Sci, 1979;8(4):303-333
[6] Carbonell J G. Learning by analogy:formulating and generalizing plans from past experience. In:Michalski R S, et al, eds, Machine Learning-An Artificial Intelligence Approach, USA, Tioga Publishing Co, 1983:137-161
[7] 王士同等.具有学习功能的规划生长系统PLGS.机器人, 1987;(5):35-39
[8] Han J, Shi Z. Robot planning by analogy. In:Proc of IEEE 1nt Conf on Systems, Man and Cybernetics, Beipng and Shenyang, China, 1988:781-782
[9] 涂序彦.人工智能及其应用.北京.电子工业出版社.1988:90-94
[10] 蔡自兴.Fu K S. Robot planning expert systems. In:Proc of 1986 IEEE Int Coaf on Robotics and Automation, San Francisco, California, USA, Apr 7-10, 1986;3:1973-8
[11] 蔡自兴.Fu K S. Expert-system-based robot planning.控制理论与应用.1988;5(2):30-37
[12] 蔡自兴.一个机器人搬运规划专家系统.计算机学报, 1988;(4):242-250
[13] 费宗铭等.机器学习.计算机科学.1991;(1):26-32