Abstract:An improved inverse kinematics control scheme for biped robot is presented to solve the problems of the Jacobian matrix singularity and fixed-parameters in the numerical solution.The Jacobian inversion is replaced with the approximate solution of differential motion equation.Combined with the adaptive fuzzy control to reduce the tracking error,it can regulate adaptive parameters in order to arbitrarily approach the exact solution by approximate solution.An extremely accurate and strong robust fuzzy adaptive algorithm can be obtained.Results of simulation on a biped robot show the effectiveness of the scheme.The total computation time of the presented algorithm is about 0.35 ms,so it can satisfy the requirements of real-time control of the actual biped robot.
[1] D'Souza A,Vijayakumar S,Schaal S.Learning inverse kinematics[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,NJ,USA:IEEE,2001:298-303.
[2] 谢涛,徐建峰,张永学,等.仿人机器人的研究历史、现状及展望[J].机器人,2002,24(4):367-374.Xie Tao,Xu Jianfeng,Zhang Yongxue,et al.History,current state,and prospect of study of humanoids[J].Robot,2002,24(4):367-374.
[3] Cheong J,Chung W K,Youm Y.Inverse kinematics of multilink flexible robots for high-speed applications[J].IEEE Transactions on Robotics and Automation,2004,20(2):269-282.
[4] Zannatha J M I,Limon R C.Forward and inverse kinematics for a small-sized humanoid robot[C]//International Conference on Electrical,Communications,and Computers.Piscataway,N J,USA:IEEE,2009:111-118.
[5] Buss S R,Kim J S.Selectively damped least squares for inverse kinematics[J].Journal of Graphics,GPU,& Game Tools,2005,10(3):37-49.
[6] Phuoc L M,Martinet P,Lee S,et al.Damped least square based genetic algorithm with Gaussian distribution of damping factor for singularity-robust inverse kinematics[J].Journal of Mechanical Science and Technology,2008,22(7):1330-1338.
[7] Reinhart R F,Steil J J.Recurrent neural associative learning of forward and inverse kinematics for movement generation of the redundant PA-10 robot[C]//ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems.Los Alamitos,CA,USA:IEEE Computer Society,2008:35-40.
[8] Pham D T,Casteilani M,Fahmy A A.Learning the in verse kinematics of a robot manipulator using the Bees algorithm[C]//IEEE International Conference on Industrial Informatics.Piscataway,NJ,USA:IEEE,2008:493-498.
[9] Assal S F M,Watanabe K,Izumi K.Neural network-based kinematic inversion of industrial redundant robots using cooperative fuzzy hint for the joint limits avoidance[J].IEEE/ASME Transactions on Mechatronics,2006,11(5):593-603.
[10] 钱正在,周华平,张彭.模糊逻辑在机器人逆运动学求解中的应用[J].模糊系统与数学,1995,9(4):26-31.Qian Zhengzai,Zhou Huaping,Zhang Peng.Application of fuzzy logic in solution of inverse kinematics[J].Fuzzy Systems and Mathematics,1995,9(4):26-31.
[11] Khoukhi A,Baron L,Balazinski M,et al.A hierarchical neuro-fuzzy system to near optimal-time trajectory planning of redun-dant manipulators[J].Engineering Applications of Artificial In-telligencer 2008,21(7):974-984.
[12] 梶田秀司.仿人机器人[M].北京:清华大学出版社,2007.Kajita S.Humanoid robots[M].Beijing:Tsinghna UniversityPress,2007.
[13] Neo E S,Yokoi K,Kajita S,et al.A switching command-basedwhole-body operation method for humanoid robots[J].IEEE/ASME Transactions on Mechatronics,2005,10(5):546-559.
[14] Sellaouti R,Stasse O,Kajita S,et al.Faster and smoother walk-ing of humanoid HRP-2 with passive toe joints[C]//IEEE/RSJInternational Conference on Intelligent Robots and Systems.Piscataway,NJ,USA:IEEE,2006:4909-4914.
[15] Aoi S,Egi Y,lehikawa A,et al.Experimental verification ofgait transition from quadrupedal to bipedal locomotion of anoscillator-driven biped robot[C]//IEEE/RSJ International Con-ference on Intelligent Robots and Systems.Piscataway,NJ,USA:IEEE,2008:1115-1120.