Fault Diagnosis and Fault Tolerant Control of Mobile Robots in Unknown Environments:a Survey
DUAN Zhuo-hua1,2, CAI Zi-xing1, YU Jin-xia1,3
1. Center of Intelligent System and Software, School of Information Science and Engineering, Central South University, Changsha 410083, China; 2. Department of Computer Science, Shaoguan University, Shaoguan 512003, China; 3. Department of Computer Science & Technology, Henan Polytechnic University, Jiaozuo 454000, China
Abstract:Taking moon exploration as the research background, and wheeled mobile robots(WMRs) as the research object, this paper introduces the fault models and the sensor error models of mobile robots for deep space exploration in unknown environments. Some main features of the fault detection and diagonosis(FDD) and the fault tolerant control(FTC) for WMRs in unknown environments are analyzed. Based on these, some main approaches for FDD/FTC of WMRs, including multiple model based approach, particle filter based approach, sensor fusion based approach, layered fault tolerant architecture, and so on, are summarized. At last, the main challenges, difficulties and some future trends of this field are presented.
[1] 蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题[J].控制与决策,2002,17(4):385-390. [2] Verma V, Gordon G, Simmons R, et al. Real-time fault diagnosis robot fault diagnosis [J]. IEEE Robotics & Automation Magazine,2004, 11(2): 56-66. [3] Frank P M. Analytical and qualitative model-based fault diagnosis-a survey and some new results[J]. European Journal of Control, 1996,2(1): 6-28. [4] 周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000. [5] 胡昌华,许化龙.控制系统故障诊断与容错控制的分析和设计[M].北京:国防工业出版社,2000. [6] 闻新,张洪钺,周露.控制系统的故障诊断和容错控制[M].北京:机械工业出版社,1998. [7] 王仲生.智能容错技术及应用[M].北京:国防工业出版社,2002. [8] 林笠.基于模型诊断算法及应用[D].广州:中山大学,2002. [9] de Kleer J, Williams B C. Diagnosing multiple faults[J]. Artificial Intelligence, 1987, 32(1): 97-130. [10] 姜苍华,周东华.基于计算智能方法的动态系统故障诊断技术[J].控制工程,2003,10(5):385-390. [11] 赵超,张君昌.控制系统故障检测与多模型混合估计[J].系统工程与电子技术,2001,23(7):63-65. [12] 萧德云,莫以为.混合动态系统故障诊断研究进展[J].上海海运学院学报,2001,22(3):5-12. [13] 王文辉,周东华.基于定性和半定性的故障检测与诊断技术[J].控制理论与应用,2002,19(5):653-659. [14] Carlson J, Murphy R R. Reliability analysis of mobile robots[A].Proceedings of the IEEE International Conference on Robotics and Automation[C]. USA: IEEE, 2003, vol. 1. 274-281. [15] Carlson J, Murphy R R, Nelson A. Follow-up analysis of mobile robot failures[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. USA: IEEE, 2004. 4987-4994. [16] Umesh B N. A Fault Diagnostic System for an Unmanned Autonomous Mobile Robot[D]. USA: University of Cincinnati, 1997. [17] Roumeliotis S I, Sukhatme G S, Bekey G A. Sensor fault detection and identification in a mobile robot[A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C].USA: IEEE, 1998, vol. 3. 1383-1388. [18] Goel P, Dedeoglu G, Roumeliotis S I, et al. Fault detection and identification in a mobile robot using multiple model estimation and neural network [A]. Proceedings of the IEEE International Conference on Robotics and Automation [C]. USA: IEEE, 2000, vol. 3.2302-2309. [19] Hashimoto M, Kawashima H, Nakagami T, et al. Sensor fault detection and identification in dead-reckoning system of mobile robot:interacting multiple model approach [A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems [C].USA: IEEE, 2001, vol. 3. 1321-1326. [20] Hashimoto M, Kawashima H, Oba F. A multi-model based fault detection and diagnosis of internal sensor for mobile robot[A]. Proceedings of the IEEE International Conference on Intelligent Robots and Systems[C]. USA: IEEE, 2003, vol. 4. 3787-3792. [21] Barshan B, Durrant-Whyte H F. Inertial navigation systems for mobile robots [J]. IEEE Transactions on Robotics and Automation,1995, 11(3): 328-342. [22] Chung H, Ojeda L, Borenstein J. Sensor fusion for mobile robot dead-reckoning with a precision-calibrated fiber optic gyroscope[A].Proceedings of the IEEE International Conference on Robotics and Automation[C]. USA: IEEE, 2001. 3588-3593. [23] Lamine K B, Kabanza F. History checking of temporal fuzzy logic formulas for monitoring behavior based mobile robots [A]. Proceedings of the 12th IEEE International Conference on Tools with Artificial Intelligence[C]. USA: IEEE, 2000. 312-319. [24] Aycard O, Washington R. State identification for planetary rovers:learning and recognition[A]. Proceedings of the IEEE International Conference on Robotics and Automation [C]. USA: IEEE, 2000.1163-1168. [25] Sokia M. Grid based fault detection and calibration of sensors on mobile robots[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. USA: IEEE, 1997. 2589-2594. [26] Washington R. On-board real-time state and fault identification for rovers[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. USA: IEEE, 2000, vol. 2. 1175-1181. [27] Murphy R R, Hershberger D. Classifying and recovering from sensing failures in autonomous mobile robots[A]. Proceedings of the National Conference on Artificial Intelligence[C]. USA: AAAI, 1996,vol. 2. 922-929. [28] Murphy R R. Dempster-Shafer theory for sensor fusion in autonomous mobile robots[J]. IEEE Transactions on Robotics and Automation, 1998, 14(2):197-206. [29] Murphy R R, Hershberger D. Handling sensing failures in autonomous mobile robots [J]. The International Journal of Robotics Research, 1999,18(4): 382-400. [30] Ferrell C. Failure recognition and fault tolerance of an autonomous robot[J]. Adaptive Behaviour, 1994, 2(4): 375-398.