JIANG Huai-wei1, WANG Shi-gang1, XU Wei1, ZHANG Zhi-zhou2, HE Lin2
1. School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200030, China; 2. Bio-X Life Science Research Center, College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China
Abstract:Firstly,the research in the relevant domains of bio-nano-robot is outlined,and the concept and model of virus-based bio-nano-robot proposed by our group are introduced.Secondly,key techniques and methods are analyzed,and main problems and possible solutions are also summarized.Finally,future directions and prospects are discussed.
[1] Dubey A, Sharma G, Mavroidis C, et al. Computational studies of viral protein nano-actuators[J]. Journal of Computational and Theoretical Nanoscience, 2004, 1(1):1-11. [2] Mavroidis C, Yarmush M, Dubey A, et al. Phase I NIAC Grant Final Report[R]. New Jersey:Rugters University,2002.5-53. [3] Osaka University. Graduate School Project of Frontier Biosciences[EB/OL]. http://www. fbs. osaka-u. ac. jp/eng/overview/index.html,2004. [4] Choi C Q. EU nanotech network launched[EB/OL]. http://www.biomedcentral. com/news/20040823/01/. USA:2004. [5] Hogan J. DNA robot takes its fiist steps[EB/OL]. http://www. newscientist. com/news/news. jsp? id = ns99994958. USA:2004. [6] Moon K K, Gregory S C, Robert L J. Elastic models of conformational transitions in macromolecules [J]. Journal of Molecular Graphics and Modelling,2002,21(2):151-160. [7] Mehta A D, Rock R S, Rief M, et al.Myosin-V is a processive actin-based motor[J]. Nature, 1999, 400(6744):590-593. [8] Hess H, Clemmens J, Qin D. Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces[J].Nano Letters, 2001, 1(5):235-239. [9] Hackney D, Stock M F, Moore J, et al. Modulation of kinesin halfsite release and kinetic processivity by a spacer between the head groups [J]. Biochemistry, 2003, 42(41):12011-12018. [10] B(o)hm K J, Steinmetzer P, Daniel A, et al. Kinesin driven microtubule motility in the presence of alkaline-earth metal ions:indication for a calcium ion-dependent motility [J]. Cell Motility and the Cytoskeleton ,1997, 37(3):226-231. [11] Fritz J, Baller M K, Lang H P, et al. Translating biomolecular recognition into nanomechanics[J]. Science, 2000, 288(5464):316-318. [12] Yurke B ,Mills Jr. A P. Using DNA to power nanostructure[J]. Genetic Programming and Evolvable Machines, 2003, 4(2):111-122. [13] Mao C D, Sun W Q, Shen Z Y, et al. A nanomechanical device based on the B-Z transition of DNA[J]. Nature,1999, 397(6715):144-146. [14] Noji H,Yasuda R,Yoshida M, et al. Direct observation of the rotation of F1-ATPase[J]. Nature, 1997, 386(6622):299-302. [15] Yasuda R, Noji H, Kinosita K, et al. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps[J]. Cell,1998, 93(7):1117-1124. [16] Montemagno C, Bachand G, Stelick S. Constructing biological motor powered nanomechanical devices [J]. Nanotechnology, 1999, 10(3):225-231. [17] Frasch W D. Vanadyl as a probe of the function of the F1-ATPaseMg2 + cofactor [J]. Journal of Bioenergetics and Biomembranes,2000, 32(5):539-546. [18] Orr L. Bioscience research[EB/OL]. http://photoscience. la. asu.edu/bionano/index. htm. Arizona,2004. [19] Gilbert S. Research overview [EB/OL]. http://www. pitt. edu/~biohome/Dept/Frame/Faculty/gilbert. htm. Pittsburgh,2004. [20] Richard M B. Bacterial flagella:flagellar motor[EB/OL]. http://www. cellcycle.bme. hu/oktatas/milrofiz/extra/flagella. pdf,2001. [21] DeRosier D J. The turn of the screw:the bacterial flagellar motor[J]. Cell,1998, 93(1):17-20. [22] Dhariwal A, Sukhatme G S, Requicha A A G. Bacterium-inspired robots for environmental monitoring[A]. Proceedings of the IEEE Intenational Conference on Robotics and Automation [C]. USA:IEEE,2004. 1436-1443. [23] Savran C A, Burg T P, Fritz J, et al. Microfabricated mechanical biosensor with inherently differential readout [J]. Applied Physics Letters,2003,83(8):1659-1661. [24] Plant A L, Silin V. Sensing chemical or biological warfare agents[EB/OL]. http://www. cstl. nist. gov/biotech/biomat/Projects/warfare. html. Gaithersburg,2004. [25] Ferguson J A, Boles T C, Adams C P, et al. A fiber-optic DNA biosensor microarray for the analysis of gene expression [J]. Nature Biotechnology, 1996, 14(13):1681-1684. [26] Ferguson J A, Steemers F J, Walt D R. High-density fiber-optic DNA random microsphere array[J]. Analytical Chemistry, 2000,72(22):5618-5624. [27] Manning P, McNeil C. Microfabricated multi-analyte Amperometric Sensors[EB/OL]. http://nanocenter. ncl. ac. uk/,2002. [28] Williams K A, Veenhuizen P T M, De la Torre B C. Nanotechnology:carbon nanotubes with DNA recognition[J]. Nature,2002, 420(6917):761-765. [29] Dupraz C J, Nickels P, Reierlein U, et al. Towards molecular-scale electronics and biomolecular self-assembly[J]. Superlattices and Microstructures, 2003, 33(5):569-579. [30] Mirkin C. Research focus[EB/OL]. http://www. chem. northwestem. edu/~ mkngrp/. Chicago,2004. [31] Cavalcanti A. Assembly automation with evolutionary nanorobots and sensor-based control applied to nanomedicine[J]. IEEE Transactions on Nanotechnology, 2003, 2(2):82-87.