朴松昊, 洪炳熔. 一种动态环境下移动机器人的路径规划方法[J]. 机器人, 2003, 25(1): 18-21,43..
PIAO Songhao, HONG Bingrong. A PATH PLANNING APPROACH TO MOBILE ROBOT UNDER DYNAMIC ENVIRONMENT. ROBOT, 2003, 25(1): 18-21,43..
Abstract:This paper presents a new approach to path planning under dynamic environment. MAKLINK graph is used to model the workspace. The whole system includes two parts:the global model decides the global path planning by genetic algorithm, and the local model develops the global path. Three primitive behaviors called global path following, obstacle avoidance and head for goal behaviors are used for the local path planning. Particularly, we introduce reinforcement algorithm for obstacle avoidance behavior. The results of simulation experiment indicate the effectiveness of the proposed method.
[1] 李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来.机器人,2002,24(5):475-480 [2] Yoram Keron,Johann Borenstein.Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation.Proc IEEE Int Conf Robot Automation,California,April 1991:1398-1404 [3] 马兆青,袁曾任.基于栅格的移动机器人实时导航和避障.机器人,1996,(6)344-348 [4] 张纯刚,席裕庚.动态未知环境中移动机器人的滚动路径规划.机器人,2002,24(1):71-75 [5] 李强,林良明,颜国正.一种新的移动机器人环境模型.机器人,1999,21(5):379-385 [6] Habib M K,Asama H.Efficient method to generate collision free paths for autonomous mobile robot based on new free space structuring approach.IROS,1991,563-567 [7] 孙树栋,林茂.基于遗传算法的多移动机器人协调路径规划.自动化学报,2000,26(5):672-676 [8] Watkins J C H,Dayan P,Q learning.Machine Learning.1992,8 :279-292 [9] L Kaelbling,M L Littman,A W Moore.Reinforcement Learning.A survey,Journal of Artificial Intelligent Research,1996,5(4):237-285