Development of a Bionic Hand Actuated by Thin McKibben Pneumatic Artificial Muscle
NAN Zhuojiang1, YANG Yang1, SUZUMORI Koichi2, OOGA Jun'ichiro3, LIU Na1, SUN Yi1, PU Huayan1, XIE Shaorong1
1. School of Mechanical Engineering and Automation, Shanghai University, Shanghai 200072, China;
2. Department of Mechanical and Aerospace Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan;
3. Laboratory of Mechanical and Systems, Toshiba Corporation Research & Development Center, Kawasaki 212-8582, Japan
南卓江, 杨扬, 铃森康一, 大贺淳一郎, 刘娜, 孙翊, 蒲华燕, 谢少荣. 基于细径McKibben型气动人工肌肉的仿生手研发[J]. 机器人, 2018, 40(3): 321-328.DOI: 10.13973/j.cnki.robot.170431.
NAN Zhuojiang, YANG Yang, SUZUMORI Koichi, OOGA Jun'ichiro, LIU Na, SUN Yi, PU Huayan, XIE Shaorong. Development of a Bionic Hand Actuated by Thin McKibben Pneumatic Artificial Muscle. ROBOT, 2018, 40(3): 321-328. DOI: 10.13973/j.cnki.robot.170431.
Abstract:A type of bionic hand with lightweight, superior compliance and dexterity is developed with the thin McKibben pneumatic artificial muscles as the actuators. The thin McKibben artificial muscles with the diameters of 1.3 mm and 2 mm are used as the intrinsic muscle and extrinsic muscle of the hand, respectively. The prototype is designed and manufactured according to the biologic structure of the human skeleton, joint and muscle. The prototype driven by 35 artificial muscles has a similar size of the human hand, and the mass is less than 0.5 kg. The motion performance, object grasping ability and robustness of the bionic hand are verified by experiments, and the bionic hand can accomplish the motions similar to the human hand.
[1] Butterfass J, Hirzinger G, Knoch S, et al. DLR's multisensory articulated hand. I. Hard-and software architecture[C]//IEEE International Conferenceon Robotics and Automation. Piscataway, USA:IEEE, 1998:2081-2086.
[2] Butterfass J, Grebenstein M, Liu H, et al. DLR-hand Ⅱ:Next generation of a dextrous robot hand[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2001:109-114.
[3] Grebenstein M, Chalon M, Hirzinger G, et al. Antagonistically driven finger design for the anthropomorphic DLR hand arm system[C]//IEEE-RAS International Conference on Humanoid Robots. Piscataway, USA:IEEE, 2010:609-616.
[4] Grebenstein M, Albu-Schaffer A, Bahls T, et al. The DLR hand arm system[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:3175-3182.
[5] Kawasaki H, Komatsu T. Mechanism design of anthropomorphic robot hand:Gifu hand I[J]. Journal of Robotics and Mechatronics, 1999, 11(4):269-273.
[6] Kawasaki H, Komatsu T, Uchiyama K. Dexterous anthropomorphic robot hand with distributed tactile sensor:Gifu hand Ⅱ[J]. IEEE/ASME Transactions on Mechatronics, 2002, 7(3):269-303.
[7] Mouri T, Kawasaki H, Yoshikawa K, et al. Anthropomorphic robot hand:Gifu hand Ⅲ[C]//2002 International Conference on Control, Automation and Systems. 2002:1288-1293.
[8] Melchiorri C, Vassura G. Mechanical and control features of the UB Hand Version 2[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 1992:187-193.
[9] Lotti F, Tiezzi P, Vassura G, et al. Development of UB hand 3:Early results[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2005:4488-4493.
[10] Melchiorri C, Palli G, Berselli G, et al. Development of the UB hand IV:Overview of design solutions and enabling technologies[J]. IEEE Robotics & Automation Magazine, 2013, 20(3):72-81.
[11] Lovchik C S, Diftler M A. The robonaut hand:A dexterous robot hand for space[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1999:907-912.
[12] Weghe M V, Rogers M, Weissert M, et al. The ACT hand:Design of the skeletal structure[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2004:3375-3379.
[13] Deshpande A D, Xu Z, Weghe M V, et al. Mechanisms of the anatomically correct testbed hand[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1):238-250.
[14] Okada T. Object-handling system for manual industry[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(2):79-89.
[15] Liu H, Meusel P, Seitz N, et al. The modular multisensory DLR-HIT-hand[J]. Mechanism and Machine Theory, 2007, 42(5):612-625.
[16] Liu H, Wu K, Meusel P, et al. Multisensory five-finger dexterous hand:The DLR/HIT hand Ⅱ[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2008:3692-3697.
[17] 刘伊威,金明河,樊绍巍,等.五指仿人机器人灵巧手DLR/HIT Hand Ⅱ[J].机械工程学报,2009,45(11):10-17.Liu Y W, Jin M H, Fan S W, et al. Five-finger dextrous robot hand DLR/HIT Hand Ⅱ[J]. Journal of Mechanical Engineering, 2009, 45(11):10-17.
[18] 兰天,刘伊威,金明河,等.DLR/HIT Ⅱ灵巧手控制系统及基关节同步控制[J].机电与控制学报,2009,13(4):608-614.Lan T, Liu Y W, Jin M H, et al. Control system for DLR/HIT Ⅱ dexterous robot hand and synchronized control for base joint[J] Electric Machines and Control, 2009, 13(4):608-614.
[19] 李久振,刘博,张玉茹.北航BH-985灵巧手结构设计[C]//第6届全国凸轮机构学术年会论文集.2005:140-142.Li J Z, Liu B, Zhang Y R. Structure design of BH-985 dexterous hand[C]//6th Annual Academic Conference of Cam Mechanism in China. 2005:140-142.
[20] Tsujiuchi N, Koizumi T, Shirai S, et al. Development of a low pressure driven pneumatic actuator and its application to a robot hand[C]//32nd Annual Conference on IEEE Industrial Electronics. Piscataway, USA:IEEE, 2006:3040-3045.
[21] Takeda H, Tsujiuchi N, Koizumi T, et al. Development of prosthetic arm with pneumatic prosthetic hand and tendon-driven wrist[C]//2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2009:5048-5051.
[22] Deimel R, Brock O. A compliant hand based on a novel pneumatic actuator[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2013:2047-2053.
[23] Nuchkrua T, Leephakpreeda T, Mekarporn T. Development of robot hand with pneumatic artificial muscle for rehabilitation application[C]//7th IEEE International Conference on Nano/Molecular Medicine and Engineering. Piscataway, USA:IEEE, 2013:55-58.
[24] 鲍官军.气动柔性驱动器FPA的特性及其在多指灵巧手设计中的应用研究[D].杭州:浙江工业大学,2006.Bao G J. Research on characteristics of flexible pneumatic actuator FPA and its application in multi-fingered dexterous hand design[D]. Hangzhou:Zhejiang University of Technology, 2006.
[25] Tondu B. Modelling of the McKibben artificial muscle:A review[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(3):225-253.
[26] Chou C P, Hannaford B. Measurement and modeling of McKibben pneumatic artificial muscles[J]. IEEE Transactions on Robotics and Automation, 1996, 12(1):90-102.
[27] Klute G, Czerniecki J M, Hannaford B. McKibben artificial muscles:Pneumatic actuators with biomechanical intelligence[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, USA:IEEE, 1999:221-226.
[28] Lee Y, Shimoyama I. A skeletal framework artificial hand actuated by pneumatic artificial muscles[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1999:926-931.
[29] Rothling F, Haschke R, Steil J, et al. Platform portable anthropomorphic grasping with the Bielefeld 20-DOF shadow and 9-DOF TUM hand[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2007:2951-2956.
[30] Kurumaya S, Nabae H, Endo G, et al. Design of thin McKibben muscle and multifilament structure[J]. Sensors and Actuators A:Physical, 2017, 261:66-74.
[31] Palastanga N, Field D, Soames R. Anatomy and human movement:Structure and function[M]. London, UK:Elsevier Health Sciences, 2006.