Pneumatic Control Technology Based on Fuzzy PID for MRI Compatible Robots
JIANG Shan1, FENG Wenhao1, YANG Zhiyong1, LIU Jun2
1. School of Mechanical Engineering, Tianjin University, Tianjin 300072, China;
2. Department of Magnetic Resonance, Tianjin Union Medicine Center, Tianjin 300121, China
Based on the analysis of the independently developed MRI-guided needle-penetrating robot, a pneumatic control system is designed. The on/off valve-cylinder model, cylinder friction model and long transmission lines model are established. Then, a fuzzy PID (proportional-integral-derivative) controller is designed, and PWM (pulse width modulation) signal is decomposed linearly. Simulation and experimental results indicate that the controller is effective in both position control and trajectory tracking. The controller is implemented on the robot to verify the needle precision, and the results show that the error of needle penetration is 0.79mm, which meets the accuracy requirement.
[1] 洪在地,贠超,赵磊.用于神经外科手术的磁共振图像导航机器人的兼容性研究[J].机器人,2009,31(3):204-209. Hong Z D, Yun C, Zhao L. On compatibility of an MRI-guided robot for neurosurgery[J]. Robot, 2009, 31(3): 204-209.
[2] Dai J S. Surgical robotics and its development and progress[J]. Robotica, 2010, 28(2): 161.
[3] Jolesz F A. Interventional and intraoperative MRI: A general overview of the field[J]. Journal of Magnetic Resonance Imaging, 1998, 8(1): 3-7.
[4] Guihard M, Gorce P. Modelling and simulation of a large scale of multilink mechanisms using a dynamic pneumatic controller[J]. International Journal of Modelling and Simulation, 2004, 24(1): 13-19.
[5] Muntener M, Patriciu A, Petrisor D, et al. Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement[J]. Urology, 2006, 68(6): 1313-1317.
[6] Fischer G S, Iordachita I, Csoma C, et al. MRI-compatible pneumatic robot for transperineal prostate needle placement[J]. IEEE/ASME Transactions on Mechatronics, 2008, 13(3): 295-305.
[7] Tokuda J, Fischer G S, DiMaio S P, et al. Integrated navigation and control software system for MRI-guided robotic prostate interventions[J]. Computerized Medical Imaging and Graphics, 2010, 34(1): 3-8.
[8] Yang B, Tan U X, McMillan A B, et al. Design and control of a 1-DOF MRI-compatible pneumatically actuated robot with long transmission lines[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(6): 1040-1048.
[9] 邵兵,孙立宁,杜志江,等.MRI导航的机器人辅助微创外科手术系统设计[J].机械工程师,2004(5):12-15. Shao B, Sun L N, Du Z J, et al. The design of the MRI-guided robotic minimally invasive surgery system[J]. Mechanical Engineer, 2004(5): 12-15.
[10] 张永德,耿利威,杜海艳,等.核磁共振兼容手术机器人的驱动方式分析[J].机械设计,2010,27(3):44-49. Zhang Y D, Geng L W, Du H Y, et al. Drive method analysis of magnetic resonance imaging compatible surgical robots[J]. Journal of Machine Design, 2010, 27(3): 44-49.
[11] Piltan F, Sulaiman N, Tajpaykar Z, et al. Design artificial nonlinear robust controller based on CTLC and FSMC with tunable gain[J]. International Journal of Robotics and Automation, 2011, 2(3): 195-210.
[12] 孟志娟,彭光正.模糊PID控制在气动机械手中的应用[J].机床与液压,2006,34(7):194-195,218. Meng Z J, Peng G Z. Application of fuzzy PID control for pneumatic manipulator[J]. Machine Tool & Hydraulics, 2006, 34(7): 194-195,218.
[13] 薛洋,彭光正,贺宝国,等.气动位置伺服系统的非对称模糊PID控制[J].控制理论与应用,2004,21(1):129-133. Xue Y, Peng G Z, He B G, et al. Asymmetric fuzzy PID control for pneumatic position control system[J]. Control Theroy & Applications, 2004, 21(1): 129-133.
[14] Armstrong-Helouvry B, Dupont P, De Wit C C. A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica, 1994, 30(7): 1083-1138.
[15] Schuder C B, Binder R C. The response of pneumatic transmission lines to step inputs[J]. Journal of Basic Engineering, 1959, 81(1): 578-584.
[16] 郭杰,姜杉,冯文浩,等.基于核磁图像导航的前列腺针刺手术机器人[J].机器人,2012,34(4):385-392. Guo J, Jiang S, Feng W H, et al. A robot for prostate needle insertion surgery based on MRI-guidance[J]. Robot, 2012, 34(4): 385-392.