Modeling for Robot High Precision Grinding Based on SVM
YANG Yang1, SONG Yixu1, LIANG Wei1, WANG Jiaxin1, QI Lizhe2
1. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; 2. Inter Smart Robotic Systems Co., Ltd, Langfang 065001, China
杨扬, 宋亦旭, 梁伟, 王家廞, 齐立哲. 基于SVM的机器人高精度磨削建模[J]. 机器人, 2010, 32(2): 278-282..
YANG Yang, SONG Yixu, LIANG Wei, WANG Jiaxin, QI Lizhe. Modeling for Robot High Precision Grinding Based on SVM. ROBOT, 2010, 32(2): 278-282..
Abstract:To improve the removal control for robot grinding process, we propose a modeling method based on SVM (support vector machine) regression. By analyzing a group of measurable variables relevant to grinding removal, such as robot's speed, contact force and curvature of the workpiece's surface, a regression model is built using machine learning method to predict the grinding removal. In this way, the analysis on a series of complicated dynamic variables could be avoided. The experimental results show that this method could achieve good performance. The prediction accuracy of the model reaches higher than 90%, which basically meets the demand of practical grinding.
[1] Huang H,Gong Z M,Chen X Q,et al.Smart robotic system for 3D profile turbine vane airfoil repair[J].The International Journal of Advanced Manufacturing Technology,2003,21(4):275-283.
[2] Vapnik V.The nature of statistical learning theory[M].New York,USA:Springer-Verlag,1995.
[3] Cortes C,Vapnik V.Support vector network[J].Machine Learning,1995,20(3):273-297.
[4] 杜树新,吴铁军.用于回归估计的支持向量机方法[J].系统仿真学报,2003,15(11):1580-1585.1633.Du Shuxin,Wu Tiejun.Support vector machines for regression[J].Journal of System Simulation,2003,15(11):1580-1585,1633.
[5] 朱国强,刘士荣,俞金寿.支持向量机及其在函数逼近中的应用[J].华东理工大学学报,2002,28(5):555-559,568.Zhu Guoqiang,Liu Shirong,Yu Jinshon.Support vector machine and its applications to function approximation[J].Journal of East China University of Science and Technology,2002,28(5):555-559,568.
[6] 刘江华,程君实,陈佳品.支持向量机训练算法综述[J].信息与控制,2002,31(1):45-50.Liu Jianghna,Cheng Junshi,Chen Jiapin.Support vector machine training algorithm:A review[J].Information and Control,2002,31(1):45-50.