Abstract:Three-level indoor space maps including global semantic layer, region planning layer and local space layer are built for indoor mobile robot service mission. Using the space maps, the robot not only knows the plane structure of the environment for navigation, but also obtains three-dimensional grid map of local complicated space and semantic information which can describe the function, relationship and ascription of the room and the object. Firstly, depth information acquired by vision and object function information acquired by QR (quick response) code label are used to build a three-dimensional grid map and an object function map which describe local space. Then a planar grid map is built based on Bayesian estimation algorithm, simultaneously an undirected weighted map is formed, so the region planning layer is achieved. Lastly, roomdivision topology map is built based on clustering algorithms, and semantic information including functional information and relationship of rooms, object-room ascription is obtained, which constitute global semantic topology map. The simulation results show that three-level indoor space maps are applicable to indoor robot service tasks by understanding human semantic statement, producing reasonable service path, and ensuring robot running safely in complicated environment.
[1] Grisetti G,Stachniss C,Burgard W.Improved techniques for grid mapping with Rao-Blackwellized particle filters[J].IEEE Transactions on Robotics,2007,23(1):34-46.
[2] Stachniss C,Burgard W.Mapping and exploration with mobile robots using coverage maps[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,NJ,USA:IEEE,2003:467-472.
[3] Van Zwynsvoorde D,Simeon T,Alami R.Incremental topological modeling using local Voronoi-like graphs[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,NJ,USA:IEEE,2000:897-902.
[4] Beeson P,Jong N K,Kuipers B.Towards autonomous topological place detection using the extended Voronoi graph[C]//IEEE International Conference on Robotics and Automation.Piscataway,NJ,USA:IEEE,2005:4373-4379.
[5] Blanco J L,Gonzalez J,Fernandez-Madrigal J A.Subjective local maps for hybrid metric-topological SLAM[J].Robotics and Autonomous Systems,2009,57(1):64-74.
[6] Blanco J L,Fernandez-Madrigal J A,Gonzalez J,et al.Toward a unified Bayesian approach to hybrid metric-topological SLAM[J].IEEE Transactions on Robotics,2008,24(2):259-270.
[7] Krose B J A,Vlassis N,Bunschoten R,et al.A probabifistic model for appearance-based robot localization[J].Image and Vision Computing,2001,19(6):381-391.
[8] Ntichter A,Hertzberg J.Towards semantic maps for mobile robots[J].Robotics and Autonomous Systems,2008,56(11):915-926.
[9] Rusu R B,Matron Z C,Blodow N,et al.Towards 3D Point cloud based object maps for household environments[J].Robotics and Autonomous Systems,2008,56(11):927-941.
[10] 王珂,王伟,庄严,等.基于几何-拓扑广域三维地图和全向视觉的移动机器人自定位[J].自动化学报,2008,34(11):1369-1378.Wang Ke,Wang Wei,Zhuang Yah,et al.Omnidirectional vision-based self-localization by using large-scale metrictopological 3D map[J].Acta Automatica Sinica,2008,34(11):1369-1378.
[11] Jo S,Shahab Q M,Kwon Y M,etal.Indoor modeling for interactive robot service[C]//SICE-ICASE International Joint Conference.Piscataway,NJ,USA:IEEE,2006:3531-3536.
[12] 梁志伟,马旭东,戴先中,等.基于分布式感知的移动机器人同时定位与地图创建[J].机器人,2009,31(1):33-39.Liang Zhiwei,Ma Xudong,Dai Xianzhong,et ai.Distributedperception-based simultaneous localization and mapping for mobile robots[J].Robot,2009,31(1):33-39.
[13] Biber P,Andreasson H,Ducker T,et al.3D modeling of indoor environments by a mobile robot with a laser scanner and panoramic camera[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,NJ,USA:IEEE.2004:3430-3435.
[14] Hanei D,Burgard W,Thrun S.Learning compact 3D models of indoor and outdoor environments with a mobile robot[J].Robotics and Autonomous Systems,2003,44(1):15-27.
[15] Saez J M,Escolano E A global 3D map-building approach using stereo vision[C]//IEEE International Conference on Robotics and Automation.Piscataway,NJ,USA:IEEE,2004:1197-1202.
[16] 孙珺.基于地面移动机器人感知信息的三维地图构建[D].南京:南京理工大学,2005.Sun Jun.3D map building based on data provided by autonomous land robots[D].Nanjing:Nanjing University of Science and Technology,2005.
[17] 卜范骞.基于智能空间的服务机器人定位与构图技术研究[D].济南;山东大学,2008.Bu Fanqian.Research on localization and mapping of service robot based on intelligent space[D].Jinan:Shandong University,2008.
[18] 赵守鹏,田国会,李晓磊.基于单个人工地标的机器人自主定位[J].山东大学学报:工学版,2007,37(4):39-44.Zhao Shoupeng,Tian Guohni,Li Xiaolei.Robot autonomous localization based on a single artificial landmark[J].Journal of Shandong University:Engineering Science,2007,37(4):39-44.
[19] 穴洪涛,田国会,李晓磊,等.QRCode在多种类物体识别与操作中的应用[J].山东大学学报:工学版,2007,37(6):25-30.Xue Hongtao,Tian Guohui,Li Xiaolei,et al.Application of the QR code for various object identification and manipulation[J].Journal of Shandong University:Engineering Scionce,2007,37(6):25-30.
[20] Ng A Y,Jordan M I,Weiss Y.On spectral clustering:Analysis and an algorithm[C]//Advances in Neural Information Processing Systems 14.Cambridge,MA,USA:MIT,2002:849-856.
[21] 张林.家庭服务机器人物品搜寻与定位技术研究[D].济南:山东大学,2009.Zhang Lin.Research of items searching and locating technology for home service robot[D].Jinan:Shandong University,2009.