1. National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; 2. Hi-Tech Innovation Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Abstract:A robust method for determining the relative pose between the camera(vision sensor) and the inertial measurement unit based on the unscented Kalman filter(UKF) is presented.To reduce the impact of gravity acceleration on the calibration result,the method uses iterated Kalman filter to obtain the real-time estimate of gravity acceleration in the inertial sensor coordinate frames.Simulation and experimental results show that,when there are large initial systematic errors or the system is disturbed by serious non-linear noises,the proposed method is still valid and precise for calibrating the 6-DOF relative pose between the visual sensor and the inertial measurement unit.
[1] DeSouza G N,Kak A C.Vision for mobile robot navigation:A survey[J].IEEE Transactions on Pattem Analysis and Machine Intelligence,2002,24(2):237-267.
[2] Kanade T,Amidi O,Ke Q.Real-time and 3D vision for autonomous small and micro air vehicles[C]//IEEE International Conference on Decision and Control,Piscataway,NJ,USA:IEEE,2004:1655-1662.
[3] Moeslund T B,Hilton A,Kriiger V.A survey of advances in vision-based human motion capture and analysis[J].Computer Vision and Image Understanding,2006,104(2/3):90-126.
[4] Welch G F,HISTORY:The use of the Kalman filter for human motion tracking in virtual reality[J].Presence:Teleoperators and Virtual Environments,2009,18(1):72-91.
[5] Lang P,Pinz A.Calibration of hybrid vision/inertial tracking systems[C]//Proceedings of the 2nd InerVis.Barcelona,Spain:2005.
[6] Lobo J,Dias J.Relative pose calibration between visual and inertial sensors[J].Intemational Journal of Robotics Research,2007,26(6):561-575.
[7] Mirzaei F M,Roumeliotis S I.A Kalman filter based algorithm for IMU-camera calibration:Observability analysis and performance evaluation[J].IEEE Transactions on Robotics,2008,24(5):1143-1156.
[8] Kelly J,Sukhatme G S.Fast relative pose calibration for visual and inertial sensors[C]//llth International Symposium on Experimental Robotics.Berlin,Germany:Springer-Verlag,2009:515-524.
[9] Kelly J,Sukhatme G S.Visual-inertial simultaneous localization,mapping and sensor-to-sensor self-calibration[C]//IEEE International Symposium on Computational Intelligence in Robotics and Automation.Piscataway,NJ,USA:IEEE,2009:360-368.
[10] Julier S J,Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[C]//Proceedings of the SPIE:vol.3068.Bellingham,WA,USA:SPIE,1997:182-193.
[11] Julier S J,Uhlmann J K.Unscented filtering and nonlinear estimation[J]//Proceedings of the IEEE,2004,92(3):401-422.
[12] Johnson A E,Willson R,Goguen J,et al.Field testing of the Mars exploration rovers descent image motion estimation system[C]//IEEE International Conference on Robotics and Automation.Piscataway,NJ,USA:IEEE,2005:4463-4469.
[13] Johnson A E,Montgomery J F,Matthies L H.Vision guided landing of an autonomous helicopter in hazardous terrain[C]//IEEE International Conference on Robotics and Automation.Piscataway,NJ,USA:IEEE,2005:3966-3971.
[14] Zhu R,Zhou Z Y.A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2004,12(2):295-302.
[15] Bouguet J Y.Camera calibration toolbox for Matlab[EB/OL].(2006)[2010-10-19].http://www.vision.caltech.edu/bouguetj/calibdoc/.
[16] Hom B K P.Closed-form solution of absolute orientation using unit quatenuons[J].Journal of the Optical Society of America,1987,4(4):629-642.
[17] 马颂德,张正友.计算机视觉:计算理论与算法基础[M].北京:科学出版社,1998:63-67.Ma S D,Zhang Z Y.Computer vision:Fundamentals of computational theory and algorithms[M].Beijing:Science Press,1998:63-67.