Design and Experiment of the Control System for Automatic Rocket-attaching Module of Auto-docking and Auto-separating Robot for Launch Vehicle Propellant Loading
ZHAO Shuaifeng1, DUN Xiangming1, ZHANG Yulin2, LU Jinrong3, ZOU Lipeng3, XU Beichen4
1. Research Institute of Robotics, Shanghai Jiaotong University, Shanghai 200240, China; 2. PLA General Armament Department, Beijing 100081, China; 3. Jiuquan Satellite Launch Center in China, Jiuquan 732750, China; 4. Shanghai Aerospace Bureau, Shanghai 201108, China
赵帅锋, 顿向明, 张育林, 陆晋荣, 邹利鹏, 许北辰. 运载火箭推进剂加注自动对接与脱离机器人自动上箭模块控制系统的设计与实验[J]. 机器人, 2012, 34(3): 307-313,320.DOI: 10.3724/SP.J.1218.2012.00307.
ZHAO Shuaifeng, DUN Xiangming, ZHANG Yulin, LU Jinrong, ZOU Lipeng, XU Beichen. Design and Experiment of the Control System for Automatic Rocket-attaching Module of Auto-docking and Auto-separating Robot for Launch Vehicle Propellant Loading. ROBOT, 2012, 34(3): 307-313,320. DOI: 10.3724/SP.J.1218.2012.00307.
Abstract:Aiming at the automatic rocket-attaching problem of the auto-docking and auto-separating robot for launch vehicle propellant loading, a control system is designed for the automatic rocket-attaching module. The system uses image processing algorithm to provide visual information for the autonomous navigation positioning in plane, and the force servo algorithm is designed to assist the rocket-attaching to complete smoothly. A large number of docking simulation experiments and the experiments on real rockets prove the reliability and stability of the control system.
[1] 黄小妮,顿向明,张育林,等.运载火箭推进剂加注自动对接与脱离机器人本体设计[J].机器人,2010, 32(2): 145-149. Huang X N, Dun X M, Zhang Y L, et al. The auto-docking and auto-separating mechanism designed for the rocket fuel loading[J]. Robot, 2010, 32(2): 145-149. [2] 王瑞铨.运载火箭脐带连接器研讨[J].航天发射技术,2002(3): 1-15. Wang R Q. The rocket's umbilical connector technology study[J]. Space Launch Technology, 2002(3): 1-15. [3] 王立兴.俄罗斯火箭脐带自动对接技术评析[J].航天发射技术,2003(1): 45-50. Wang L X. The technical analysis on automated connection of Russian's rocket cord[J]. Space Launch Technology, 2003(1): 45-50. [4] 林来兴.四十年空间交会对接技术的发展[J].航天器工程,2007(4): 70-77. Lin L X. Development of space rendezvous and docking technology in past 40 years[J]. Spacecraft Engineering, 2007(4): 70-77. [5] Singh H, Bellingham J G, Hover F, et al. Docking for an autonomous ocean sampling network[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 498-514. [6] Yim M, Zhang Y, Roufas K, et al. Connecting and disconnecting for chain self-reconfiguration with PolyBot[J]. IEEE/ASME Transactions on Mechatronics, 2002, 7(4): 442-451. [7] Tong F, Tso S K, Xu T Z. A high precision ultrasonic docking system used for automatic guided vehicle[J]. Sensors and Actuators A -Physical, 2005, 118(2): 183-189. [8] Silverman M C, Nies D, Jung B, et al. Staying alive: A docking station for autonomous robot recharging[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2002: 1050-1055. [9] 杨放琼,谭青,徐海良,等.利用红外和激光导向实现移动机器人的精确对接[J].光学工程,2007,34(11):14-18. Yang F Q, Tan Q, Xu H L, et al. Precision docking of a mobile robot using infrared and laser guidance[J]. Opto-Electronic Engineering, 2007, 34(11): 14-18. [10] Wang W, Li Z L, Yu W P, et al. An autonomous docking method based on ultrasonic sensors for self-reconfigurable mobile robot[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ, USA: IEEE, 2009: 1744-1749. [11] Murphy R R, Hyams J, Minten B, et al. Vision-based docking under variable lighting conditions[C]//Conference on Unmanned Ground Vehicle Technology, vol.4024. Bellingham, WA, USA: SPIE, 2000: 2-8. [12] Santos-Victor J, Sandini G. Visual behaviors for docking[J]. Computer Vision and Image Understanding, 1997, 67(3): 223-238. [13] 孙立宁,钟鸣,李满天.基于嵌入式视觉的移动式自重构微小型机器人[J]. 光学精密工程,2009,17(12): 3001-3008. Sun L N, Zhong M, Li M T. Mobile miniature self-reconfigurable robot based on embedded vision[J]. Optics and Precision Engineering, 2009, 17(12): 3001-3008. [14] 李阳.基于视觉的移动机器人运动目标跟踪技术研究[D].北京:北京交通大学,2009. Li Y. Vision based moving target tracking of mobile robots[D]. Beijing: Beijing Jiaotong University, 2009. [15] 夏庭锴,杨明,杨汝清.基于单目视觉的移动机器人导航算法研究进展[J].控制与决策,2010,25(1): 1-6. Xia T K, Yang M, Yang R Q. Progress in monocular vision based mobile robot navigation[J]. Control and Decision, 2010, 25(1): 1-6. [16] Duda R O, Hart P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15(1): 11-15. [17] Marchant J A, Brivot R. Real-time tracking of plant rows using a Hough transform[J]. Real-Time Imaging, 1995, 1(5): 363-371. [18] Xu L, Oja E. Randomized Hough transform (RHT): Basic mechanisms, algorithms and computational complexities[J]. Computer Vision Graphics and Image Processing -Image Understanding, 1993, 57(2): 131-154. [19] Zhang H, Hou D B, Zhou Z K. A novel lane detection algorithm based on support vector machine[J]. PIERS Online, 2005, 1(4): 390-394. [20] Saxena A, Chung S H, Ng A Y. 3-D depth reconstruction from a single still image[J]. International Journal of Computer Vision, 2008, 76(1): 53-69.