Bio-Syncretic Robots Composed of Living-Electromechanical Systems
YANG Lianchao1,2,3, ZHANG Chuang1,2, WANG Ruiqian1,2,3, ZHANG Yiwei1,2,4, TAN Wenjun1,2,3, LIU Lianqing1,2
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. School of Automation and Electrical Engineering, University of Shenyang Ligong, Shenyang 110159, China
Abstract:Bio-syncretic robots are a new type of robots formed by the organic fusion of living systems and electromechanical systems at the molecular, cellular and tissue scales, which have the potential advantages of high energy conversion efficiency, long endurance and miniaturization, and can provide new ideas to break through the bottlenecks faced by traditional robots in terms of drive, sensing, intelligence and so on. Focusing on the research status of bio-syncretic robots, this review systematically classifies and introduces existing bio-syncretic robots firstly according to different living materials (such as cardiomyocytes, skeletal muscle cells, neuro-muscle, insect muscle tissue, and microorganisms). Subsequently, the commonly used non-living materials (such as polydimethylsiloxane (PDMS), hydrogel), control methods (such as electrical control, optical control, chemical control, magnetic control) and application scenarios of bio-syncretic robots (such as micro-robots, lab on a chip, biomedicine) are discussed in detail. Finally, the potential challenges and possible development directions of bio-syncretic robot research are analyzed and prospected.
[1] Chan V, Asada H H, Bashir R. Utilization and control of bioactuators across multiple length scales[J]. Lab on a Chip, 2014, 14(4):653-670. [2] Ricotti L, Trimmer B, Feinberg A W, et al. Biohybrid actuators for robotics:A review of devices actuated by living cells[J]. Science Robotics, 2017, 2(12). DOI:10.1126/scirobotics. aaq049. [3] Gupta U, Qin L, Wang Y, et al. Soft robots based on dielectric elastomer actuators:A review[J]. Smart Materials and Structures, 2019, 28(10). DOI:10.1088/1361-665X/ab3a77. [4] Burrows M. Froghopper insects leap to new heights[J]. Nature, 2003, 424(6948):509-509. [5] Queen Mary, University of London. Pulling power points the way to world's strongest insect-A dung beetle[EB/OL]. (2010-03-24)[2022-06-27]. https://www.sciencedaily.com/releases/2010/03/100323212158.htm. [6] Yang G-Z, Bellingham J, Dupont P E, et al. The grand challenges of Science Robotics[J]. Science Robotics, 2018, 3(14). DOI:10.1126/scirobotics.aar7650. [7] Simmel F C, Yurke B. Using DNA to construct and power a nanoactuator[J]. Physical Review E, 2001, 63(4). DOI:10. 1103/PhysRevE.63.041913. [8] Shin J-S, Pierce N A. A synthetic DNA walker for molecular transport[J]. Journal of the American Chemical Society, 2004, 126(35):10834-10835. [9] Tian Y, He Y, Chen Y, et al. A DNAzyme that walks processively and autonomously along a one-dimensional track[J]. Angewandte Chemie, 2005, 117(28):4429-4432. [10] Huxley A. Mechanics and models of the myosin motor[J]. Philosophical Transactions of the Royal Society of London, Series B:Biological Sciences, 2000, 355(1396):433-440. [11] Spudich J A. The myosin swinging cross-bridge model[J]. Nature Reviews:Molecular Cell Biology, 2001, 2(5):387-392. [12] Limberis L, Magda J J, Stewart R J. Polarized alignment and surface immobilization of microtubules for kinesin-powered nanodevices[J]. Nano Letters, 2001, 1(5):277-280. [13] Muthukrishnan G, Hutchins B M, Williams M E, et al. Transport of semiconductor nanocrystals by kinesin molecular motors[J]. Small, 2006, 2(5):626-630. [14] Noji H, Yasuda R, Yoshida M, et al. Direct observation of the rotation of F1-ATPase[J]. Nature, 1997, 386(6622):299-302. [15] Soong R K, Bachand G D, Neves H P, et al. Powering an inorganic nanodevice with a biomolecular motor[J]. Science, 2000, 290(5496):1555-1558. [16] Chan V, Park K, Collens M B, et al. Development of miniaturized walking biological machines[J]. Scientific Reports, 2012, 2(1):1-8. [17] Tanaka Y, Sato K, Shimizu T, et al. A micro-spherical heart pump powered by cultured cardiomyocytes[J]. Lab on a Chip, 2007, 7(2):207-212. [18] Lee K Y, Park S-J, Matthews D G, et al. An autonomously swimming biohybrid fish designed with human cardiac biophysics[J]. Science, 2022, 375(6581):639-647. [19] Guix M, Mestre R, Patiño T, et al. Biohybrid soft robots with self-stimulating skeletons[J]. Science Robotics, 2021, 6(53). DOI:10.1126/scirobotics.abe7577. [20] Liu L Q, Zhang C, Wang W X, et al. Regulation of C2C12 differentiation and control of the beating dynamics of contractile cells for a muscle-driven biosyncretic crawler by electrical stimulation[J]. Soft Robotics, 2018, 5(6):748-760. [21] Raman R, Cvetkovic C, Uzel S G, et al. Optogenetic skeletal muscle-powered adaptive biological machines[J]. Proceedings of the National Academy of Sciences, 2016, 113(13):3497-3502. [22] Li Z, Seo Y, Aydin O, et al. Biohybrid valveless pump-bot powered by engineered skeletal muscle[J]. Proceedings of the National Academy of Sciences, 2019, 116(5):1543-1548. [23] Kaufman C D, Liu S, Cvetkovic C, et al. Emergence of functional neuromuscular junctions in an engineered, multicellular spinal cord-muscle bioactuator[J]. APL Bioengineering, 2020, 4(2). DOI:10.1063/1.5121440. [24] Aydin O, Zhang X, Nuethong S, et al. Neuromuscular actuation of biohybrid motile bots[J]. Proceedings of the National Academy of Sciences, 2019, 116(40):19841-19847. [25] Yalikun Y, Uesugi K, Hiroki M, et al. Insect muscular tissuepowered swimming robot[J]. Actuators, 2019, 8(2). DOI:10. 3390/act8020030. [26] Akiyama Y, Sakuma T, Funakoshi K, et al. Atmosphericoperable bioactuator powered by insect muscle packaged with medium[J]. Lab on a Chip, 2013, 13(24):4870-4880. [27] Alapan Y, Yasa O, Schauer O, et al. Soft erythrocytebased bacterial microswimmers for cargo delivery[J]. Science Robotics, 2018, 3(17). DOI:10.1126/scirobotics.aar4423. [28] Liu L, Wu J Y, Chen B, et al. Magnetically actuated biohybrid microswimmers for precise photothermal muscle contraction[J]. ACS Nano, 2022, 16(4):6515-6526. [29] Kim D H, Cheang U K, Kőhidai L, et al. Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles:A tool for fabrication of microbiorobots[J]. Applied Physics Letters, 2010, 97(17). DOI:10.1063/1. 3497275. [30] Xu H, Medina-Sánchez M, Magdanz V, et al. Sperm-hybrid′ micromotor for targeted drug delivery[J]. ACS Nano, 2018, 12(1):327-337. [31] Zhang H Y, Li Z S, Gao C Y, et al. Dual-responsive biohybrid neutrobots for active target delivery[J]. Science Robotics, 2021, 6(52). DOI:10.1126/scirobotics.aaz9519. [32] Lin G, Pister K S, Roos K P. Surface micromachined polysilicon heart cell force transducer[J]. Journal of Microelectromechanical Systems, 2000, 9(1):9-17. [33] Tan J L, Tien J, Pirone D M, et al. Cells lying on a bed of microneedles:An approach to isolate mechanical force[J]. Proceedings of the National Academy of Sciences, 2003, 100(4):1484-1489. [34] Zhao Y, Zhang X. Contraction force measurements in cardiac myocytes using PDMS pillar arrays[C]//IEEE 18th International Conference on Micro Electro Mechanical Systems. Piscataway, USA:IEEE, 2005:834-837. [35] Balaban N Q, Schwarz U S, Riveline D, et al. Force and focal adhesion assembly:A close relationship studied using elastic micropatterned substrates[J]. Nature Cell Biology, 2001, 3(5):466-472. [36] Zhang C, Wang W X, He W H, et al. Dynamic model for characterizing contractile behaviors and mechanical properties of a cardiomyocyte[J]. Biophysical Journal, 2018, 114(1):188-200. [37] Park J, Ryu J, Choi S K, et al. Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers[J]. Analytical Chemistry, 2005, 77(20):6571-6580. [38] Fu F F, Shang L R, Chen Z Y, et al. Bioinspired living structural color hydrogels[J]. Science Robotics, 2018, 3(16). DOI:10.1126/scirobotics.aar8580. [39] Xu B Z, Han X M, Hu Y W, et al. A remotely controlled transformable soft robot based on engineered cardiac tissue construct[J]. Small, 2019, 15(18). DOI:10.1002/smll.201900006. [40] Kim D-H, Park J, Suh K Y, et al. Fabrication of patterned micromuscles with high activity for powering biohybrid microdevices[J]. Sensors and Actuators B:Chemical, 2006, 117(2):391-400. [41] Xi J, Schmidt J J, Montemagno C D. Self-assembled microdevices driven by muscle[J]. Nature Materials, 2005, 4(2):180-184. [42] Kim J, Park J, Yang S, et al. Establishment of a fabrication method for a long-term actuated hybrid cell robot[J]. Lab on a Chip, 2007, 7(11):1504-1508. [43] Nawroth J C, Lee H, Feinberg A W, et al. A tissue-engineered jellyfish with biomimetic propulsion[J]. Nature Biotechnology, 2012, 30(8):792-797. [44] Williams B J, Anand S V, Rajagopalan J, et al. A self-propelled biohybrid swimmer at low Reynolds number[J]. Nature Communications, 2014, 5(1):1-8. [45] Jiang Y, Torun T, Maffioletti S M, et al. Bioengineering human skeletal muscle models:Recent advances, current challenges and future perspectives[J]. Experimental Cell Research, 2022, 416(2). DOI:10.1016/j.yexcr.2022.113133. [46] Herr H, Dennis R G. A swimming robot actuated by living muscle tissue[J]. Journal of Neuroengineering and Rehabilitation, 2004, 1(1):1-9. [47] Shimizu K, Sasaki H, Hida H, et al. Assembly of skeletal muscle cells on a Si-MEMS device and their generative force measurement[J]. Biomedical Microdevices, 2010, 12(2):247-252. [48] Dennis R G, Kosnik P E, Gilbert M E, et al. Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines[J]. American Journal of Physiology:Cell Physiology, 2001, 280(2):C288-C295. [49] Strohman R C, Bayne E, Spector D, et al. Myogenesis and histogenesis of skeletal muscle on flexible membranes in vitro[J]. In Vitro Cellular & Developmental Biology, 1990, 26(2):201-208. [50] Hasebe A, Suematsu Y, Takeoka S, et al. Biohybrid actuators based on skeletal muscle-powered microgrooved ultrathin films consisting of poly (styrene-block-butadiene-blockstyrene)[J]. ACS Biomaterials Science & Engineering, 2019, 5(11):5734-5743. [51] Riboldi S A, Sadr N, Pigini L, et al. Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds[J]. Journal of Biomedical Materials Research, Part A, 2008, 84(4):1094-1101. [52] Rockwood D N, Woodhouse K A, Fromstein J D, et al. Characterization of biodegradable polyurethane microfibers for tissue engineering[J]. Journal of Biomaterials Science, Polymer Edition, 2007, 18(6):743-758. [53] Evans D J, Britland S, Wigmore P M. Differential response of fetal and neonatal myoblasts to topographical guidance cues in vitro[J]. Development Genes and Evolution, 1999, 209(7):438-442. [54] Patz T, Doraiswamy A, Narayan R, et al. Two-dimensional differential adherence and alignment of C2C12 myoblasts[J]. Materials Science and Engineering:B, 2005, 123(3):242-247. [55] Clark P, Dunn G, Knibbs A, et al. Alignment of myoblasts on ultrafine gratings inhibits fusion in vitro[J]. The International Journal of Biochemistry & Cell Biology, 2002, 34(7):816-825. [56] Jiang X Y, Takayama S, Qian X P, et al. Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly (dimethylsiloxane)[J]. Langmuir, 2002, 18(8):3273-3280. [57] Lam M T, Huang Y-C, Birla R K, et al. Microfeature guided skeletal muscle tissue engineering for highly organized 3-dimensional free-standing constructs[J]. Biomaterials, 2009, 30(6):1150-1155. [58] Hosseini V, Ahadian S, Ostrovidov S, et al. Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate[J]. Tissue Engineering, Part A, 2012, 18(23-24):2453-2465. [59] Altomare L, Riehle M, Gadegaard N, et al. Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation[J]. The International Journal of Artificial Organs, 2010, 33(8):535-543. [60] Flaibani M, Boldrin L, Cimetta E, et al. Muscle differentiation and myotubes alignment is influenced by micropatterned surfaces and exogenous electrical stimulation[J]. Tissue Engineering, Part A, 2009, 15(9):2447-2457. [61] Sun Y, Duffy R, Lee A, et al. Optimizing the structure and contractility of engineered skeletal muscle thin films[J]. Acta Biomaterialia, 2013, 9(8):7885-7894. [62] Duffy R M, Sun Y, Feinberg A W. Understanding the role of ECM protein composition and geometric micropatterning for engineering human skeletal muscle[J]. Annals of Biomedical Engineering, 2016, 44(6):2076-2089. [63] Nomura T, Takeuchi M, Kim E, et al. Development of cultured muscles with tendon structures for modular bio-actuators[J]. Micromachines, 2021, 12(4). DOI:10.3390/mi12040379. [64] Baar K, Esser K. Phosphorylation of p70S6kcorrelates with increased skeletal muscle mass following resistance exercise[J]. American Journal of Physiology:Cell Physiology, 1999, 276(1):C120-C127. [65] Fujita H, Nedachi T, Kanzaki M. Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes[J]. Experimental Cell Research, 2007, 313(9):1853-1865. [66] Nedachi T, Fujita H, Kanzaki M. Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle[J]. American Journal of Physiology:Endocrinology and Metabolism, 2008, 295(5):E1191-E1204. [67] Raman R, Grant L, Seo Y, et al. Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators[J]. Advanced Healthcare Materials, 2017, 6(12). DOI:10.1002/adhm. 201700030. [68] Romanazzo S, Forte G, Morishima K, et al. IL-12 involvement in myogenic differentiation of C2C12 in vitro[J]. Biomaterials Science, 2015, 3(3):469-479. [69] Zhang C, Wang W X, Xi N, et al. Development and future challenges of bio-syncretic robots[J]. Engineering, 2018, 4(4):452-463. [70] Cvetkovic C, Raman R, Chan V, et al. Three-dimensionally printed biological machines powered by skeletal muscle[J]. Proceedings of the National Academy of Sciences, 2014, 111(28):10125-10130. [71] Kim T H, Kwon C H, Lee C, et al. Bio-inspired hybrid carbon nanotube muscles[J]. Scientific Reports, 2016, 6(1):1-8. [72] Morimoto Y, Onoe H, Takeuchi S. Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues[J]. Science Robotics, 2018, 3(18). DOI:10.1126/scirobotics.aat4440. [73] Morimoto Y, Onoe H, Takeuchi S. Biohybrid robot with skeletal muscle tissue covered with a collagen structure for moving in air[J]. APL Bioengineering, 2020, 4(2). DOI:10.1063/1. 5127204. [74] Hofmann W. Neurotrophism-Another approach[M]. Berlin, Germany:Springer, 1987:119-134. [75] Lu H, McManus J M, Cullins M J, et al. Preparing the periphery for a subsequent behavior:Motor neuronal activity during biting generates little force but prepares a retractor muscle to generate larger forces during swallowing in Aplysia[J]. Journal of Neuroscience, 2015, 35(12):5051-5066. [76] Webster V A, Young F R, Patel J M, et al. 3D-printed biohybrid robots powered by neuromuscular tissue circuits from Aplysia californica[C]//Conference on Biomimetic and Biohybrid Systems. Cham, Switzerland:Springer, 2017:475-486. [77] Cvetkovic C, Rich M H, Raman R, et al. A 3D-printed platform for modular neuromuscular motor units[J]. Microsystems & Nanoengineering, 2017, 3(1):1-9. [78] Aydin O, Passaro A P, Elhebeary M, et al. Development of 3D neuromuscular bioactuators[J]. APL Bioengineering, 2020, 4(1). DOI:10.1063/1.5134477. [79] Shum A J, Parviz B A. Vacuum microfabrication on live fruit fly[C]//IEEE 20th International Conference on Micro Electro Mechanical Systems. Piscataway, USA:IEEE, 2007:179-182. [80] Larsen W. The maintenance of embryonic cockroach heart fragments in vitro[J]. Life Sciences, 1963, 2(8):606-610. [81] Akiyama Y, Iwabuchi K, Furukawa Y, et al. Fabrication and evaluation of temperature-tolerant bioactuator driven by insect heart cells[C]//12th International Conference on Miniaturized Systems for Chemistry and Life Sciences. San Diego, USA:CBMS, 2008:1669-1671. [82] Akiyama Y, Iwabuchi K, Furukawa Y, et al. Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue[J]. Lab on a Chip, 2009, 9(1):140-144. [83] Uesugi K, Shimizu K, Akiyama Y, et al. Contractile performance and controllability of insect muscle-powered bioactuator with different stimulation strategies for soft robotics[J]. Soft Robotics, 2016, 3(1):13-22. [84] Akiyama Y, Odaira K, Sakiyama K, et al. Rapidly-moving insect muscle-powered microrobot and its chemical acceleration[J]. Biomedical Microdevices, 2012, 14(6):979-986. [85] Singh A V, Hosseinidoust Z, Park B-W, et al. Microemulsionbased soft bacteria-driven microswimmers for active cargo delivery[J]. ACS Nano, 2017, 11(10):9759-9769. [86] Akiyama Y, Hoshino T, Iwabuchi K, et al. Room temperature operable autonomously moving bio-microrobot powered by insect dorsal vessel tissue[J]. PLoS One, 2012, 7(7). DOI:10.1371/journal.pone.0038274. [87] Shimizu K, Takayuki H, Akiyama Y, et al. Multi-scale reconstruction and performance of insect muscle powered bioactuator from tissue to cell sheet[C]//IEEE 3rd RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA:IEEE, 2010:425-430. [88] Baryshyan A L, Woods W, Trimmer B A, et al. Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos[J]. PLoS One, 2012, 7(2). DOI:10.1371/journal.pone.0031598. [89] Baryshyan A, Domigan L, Hunt B, et al. Self-assembled insect muscle bioactuators with long term function under a range of environmental conditions[J]. RSC Advances, 2014, 4(75):39962-39968. [90] Kristjansson J, Hreggvidsson G. Ecology and habitats of extremophiles[J]. World Journal of Microbiology and Biotechnology, 1995, 11(1):17-25. [91] Martel S. Bacterial microsystems and microrobots[J]. Biomedical Microdevices, 2012, 14(6):1033-1045. [92] Darnton N, Turner L, Breuer K, et al. Moving fluid with bacterial carpets[J]. Biophysical Journal, 2004, 86(3):1863-1870. [93] Liu B, Breuer K S, Powers T R. Helical swimming in Stokes flow using a novel boundary-element method[J]. Physics of Fluids, 2013, 25(6). DOI:10.1063/1.4812246. [94] Rostami M W, Liu W, Buchmann A, et al. Optimal design of bacterial carpets for fluid pumping[J]. Fluids, 2022, 7(1). DOI:10.3390/fluids7010025. [95] Guzmán-Lastra F, Löwen H, Mathijssen A J. Active carpets drive non-equilibrium diffusion and enhanced molecular fluxes[J]. Nature Communications, 2021, 12(1):1-15. [96] Kim M J, Breuer K S. Use of bacterial carpets to enhance mixing in microfluidic systems[J]. Journal of Fluids Engineering, 2007, 129(3):319-324. [97] Mathijssen A J, Guzmáan-Lastra F, Kaiser A, et al. Nutrient transport driven by microbial active carpets[J]. Physical Review Letters, 2018, 121(24). DOI:10.1103/PhysRevLett.121. 248101. [98] Short M B, Solari C A, Ganguly S, et al. Flows driven by flagella of multicellular organisms enhance long-range molecular transport[J]. Proceedings of the National Academy of Sciences, 2006, 103(22):8315-8319. [99] Carlsen R W, Sitti M. Bio-hybrid cell-based actuators for microsystems[J]. Small, 2014, 10(19):3831-3851. [100] Bastos-Arrieta J, Revilla-Guarinos A, Uspal W E, et al. Bacterial biohybrid microswimmers[J]. Frontiers in Robotics and AI, 2018, 5. DOI:10.3389/frobt.2018.00097. [101] Felfoul O, Mohammadi M, Taherkhani S, et al. Magnetoaerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions[J]. Nature Nanotechnology, 2016, 11(11):941-947. [102] Park S-J, Gazzola M, Park K S, et al. Phototactic guidance of a tissue-engineered soft-robotic ray[J]. Science, 2016, 353(6295):158-162. [103] Suzumura K, Funakoshi K, Hoshino T, et al. A lightregulated bio-micro-actuator powered by transgenic Drosophila melanogaster muscle tissue[C]//IEEE 24th International Conference on Micro Electro Mechanical Systems. Piscataway, USA:IEEE, 2011:149-152. [104] Nagamine K, Kawashima T, Sekine S, et al. Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet[J]. Lab on a Chip, 2011, 11(3):513-517. [105] Asano T, Ishizua T, Yawo H. Optically controlled contraction of photosensitive skeletal muscle cells[J]. Biotechnology and Bioengineering, 2012, 109(1):199-204. [106] Sakar M S, Neal D, Boudou T, et al. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators[J]. Lab on a Chip, 2012, 12(23):4976-4985. [107] Park S J, Park S-H, Cho S, et al. New paradigm for tumor theranostic methodology using bacteria-based microrobot[J]. Scientific Reports, 2013, 3(1):1-8. [108] Dong X, Kheiri S, Lu Y, et al. Toward a living soft microrobot through optogenetic locomotion control of Caenorhabditis elegans[J]. Science Robotics, 2021, 6(55). DOI:10.1126/scirobotics.abe3950. [109] Yasa I C, Ceylan H, Bozuyuk U, et al. Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots[J]. Science Robotics, 2020, 5(43). DOI:10.1126/scirobotics.aaz3867. [110] Han J, Zhen J, Nguyen V D, et al. Hybrid-actuating macrophage-based microrobots for active cancer therapy[J]. Scientific Reports, 2016, 6(1):1-10. [111] Nguyen V D, Min H-K, Kim H Y, et al. Primary macrophagebased microrobots:An effective tumor therapy in vivo by dualtargeting function and near-infrared-triggered drug release[J]. ACS Nano, 2021, 15(5):8492-8506. [112] Shao J X, Xuan M J, Zhang H Y, et al. Chemotaxis-guided hybrid neutrophil micromotors for targeted drug transport[J]. Angewandte Chemie, 2017, 129(42):13115-13119. [113] Kennedy L C, Bear A S, Young J K, et al. T cells enhance gold nanoparticle delivery to tumors in vivo[J]. Nanoscale Research Letters, 2011, 6(1):1-11. [114] Yan J J, Yu J C, Wang C, et al. Red blood cells for drug delivery[J]. Small Methods, 2017, 1(12). DOI:10.1002/smtd. 201700270. [115] Wu Z G, Li T L, Li J X, et al. Turning erythrocytes into functional micromotors[J]. ACS Nano, 2014, 8(12):12041-12048. [116] Lu Y F, Hu Q Y, Jiang C, et al. Platelet for drug delivery[J]. Current Opinion in Biotechnology, 2019, 58:81-91. [117] Tang S S, Zhang F Y, Gong H, et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery[J]. Science Robotics, 2020, 5(43). DOI:10.1126/scirobotics. aba6137. [118] Magdanz V, Sanchez S, Schmidt O G. Development of a sperm-flagella driven micro-bio-robot[J]. Advanced Materials, 2013, 25(45):6581-6588. [119] Xu H, Medina-Sánchez M, Maitz M F, et al. Sperm micromotors for cargo delivery through flowing blood[J]. ACS Nano, 2020, 14(3):2982-2993. [120] Long X Y, Ye J, Zhao D, et al. Magnetogenetics:Remote noninvasive magnetic activation of neuronal activity with a magnetoreceptor[J]. Science Bulletin, 2015, 60(24):2107-2119. [121] Feinberg A W, Feigel A, Shevkoplyas S S, et al. Muscular thin films for building actuators and powering devices[J]. Science, 2007, 317(5843):1366-1370. [122] Kang E, Ryoo J, Jeong G S, et al. Large-scale, ultrapliable, and free-standing nanomembranes[J]. Advanced Materials, 2013, 25(15):2167-2173. [123] Bodas D, Khan-Malek C. Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment-An SEM investigation[J]. Sensors and Actuators B:Chemical, 2007, 123(1):368-373. [124] Bian W, Liau B, Badie N, et al. Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues[J]. Nature Protocols, 2009, 4(10):1522-1534. [125] Shang Y, Chen Z, Fu F, et al. Cardiomyocyte-driven structural color actuation in anisotropic inverse opals[J]. ACS Nano, 2018, 13(1):796-802. [126] Sun L Y, Chen Z Y, Bian F K, et al. Bioinspired soft robotic caterpillar with cardiomyocyte drivers[J]. Advanced Functional Materials, 2020, 30(6). DOI:10.1002/adfm.201907820. [127] Liu X, Zhao H, Lu Y X, et al. In vitro cardiomyocytedriven biogenerator based on aligned piezoelectric nanofibers[J]. Nanoscale, 2016, 8(13):7278-7286. [128] Yoon J, Eyster T W, Misra A C, et al. Cardiomyocyte-driven actuation in biohybrid microcylinders[J]. Advanced Materials, 2015, 27(30):4509-4515. [129] Cho S, Park S J, Ko S Y, et al. Development of bacteriabased microrobot using biocompatible poly (ethylene glycol)[J]. Biomedical Microdevices, 2012, 14(6):1019-1025. [130] Pagan-Diaz G J, Zhang X, Grant L, et al. Simulation and fabrication of stronger, larger, and faster walking biohybrid machines[J]. Advanced Functional Materials, 2018, 28(23). DOI:10.1002/adfm.201801145. [131] Raman R, Cvetkovic C, Bashir R. A modular approach to the design, fabrication, and characterization of muscle-powered biological machines[J]. Nature Protocols, 2017, 12(3):519- 533. [132] Zhang Y S, Khademhosseini A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337). DOI:10.1126/science. aaf3627. [133] Yamamoto Y, Ito A, Fujita H, et al. Functional evaluation of artificial skeletal muscle tissue constructs fabricated by a magnetic force-based tissue engineering technique[J]. Tissue Engineering, Part A, 2011, 17(1-2):107-114. [134] Ricotti L, Taccola S, Pensabene V, et al. Adhesion and proliferation of skeletal muscle cells on single layer poly (lactic acid) ultra-thin films[J]. Biomedical Microdevices, 2010, 12(5):809-819. [135] Khodabukus A, Baar K. Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle[J]. Tissue Engineering, Part C:Methods, 2012, 18(5):349-357. [136] Radisic M, Park H, Shing H, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds[J]. Proceedings of the National Academy of Sciences, 2004, 101(52):18129-18134. [137] Langhammer C G, Kutzing M K, Luo V, et al. Skeletal myotube integration with planar microelectrode arrays in vitro for spatially selective recording and stimulation:A comparison of neuronal and myotube extracellular action potentials[J]. Biotechnology Progress, 2011, 27(3):891-895. [138] Barolet D. Light-emitting diodes (LEDs) in dermatology[J]. Seminars in Cutaneous Medicine and Surgery, 2008, 27(4):227-238. [139] Frigault M M, Lacoste J, Swift J L, et al. Live-cell microscopy-Tips and tools[J]. Journal of Cell Science, 2009, 122(6):753- 767. [140] Vandenburgh H, Shansky J, Benesch-Lee F, et al. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts[J]. The FASEB Journal, 2009, 23(10):3325-3334. [141] Kim D, Liu A, Stitti M. Chemotactic behavior and dynamics of bacteria propelled microbeads[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2011:1674-1679. [142] Park D, Park S J, Cho S, et al. Motility analysis of bacteriabased microrobot (bacteriobot) using chemical gradient microchamber[J]. Biotechnology and Bioengineering, 2014, 111(1):134-143. [143] Martel S, Mohammadi M, Felfoul O, et al. Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature[J]. International Journal of Robotics Research, 2009, 28(4):571-582. [144] Zhang C, Wang J Y, Wang W X, et al. Modeling and analysis of bio-syncretic micro-swimmers for cardiomyocyte-based actuation[J]. Bioinspiration & Biomimetics, 2016, 11(5). DOI:10.1088/1748-3190/11/5/056006. [145] Borghol N, Mora L, Jouenne T, et al. Monitoring of E. coli immobilization on modified gold electrode:A new bacteriabased glucose sensor[J]. Biotechnology and Bioprocess Engineering, 2010, 15(2):220-228. [146] Choi J-W, Park K-W, Lee D-B, et al. Cell immobilization using self-assembled synthetic oligopeptide and its application to biological toxicity detection using surface plasmon resonance[J]. Biosensors and Bioelectronics, 2005, 20(11):2300-2305. [147] Souiri M, Gammoudi I, Ouada H B, et al. Escherichia colifunctionalized magnetic nanobeads as an ultrasensitive biosensor for heavy metals[J]. Procedia Chemistry, 2009, 1(1):1027- 1030. [148] Li J, Dekanovsky L, Khezri B, et al. Biohybrid micro- and nanorobots for intelligent drug delivery[J]. Cyborg and Bionic Systems, 2022. DOI:10.34133/2022/9824057. [149] Lin Z, Jiang T, Shang J. The emerging technology of biohybrid micro-robots:a review[J]. Bio-Design and Manufacturing, 2022, 5(1):107-132. [150] Martins J-M F, Fischer C, Urzi A, et al. Self-organizing 3D human trunk neuromuscular organoids[J]. Cell Stem Cell, 2020, 26(2):172-186. [151] Brassard J A, Lutolf M P. Engineering stem cell selforganization to build better organoids[J]. Cell Stem Cell, 2019, 24(6):860-876. [152] Lancaster M A, Renner M, Martin C-A, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467):373-379.