The New Robots for Underwater Torch Relay at the Beijing 2022 Winter Olympic Games
WANG Yiqun1,2,3,4, TIAN Qiyan1,2,4, LU Yang1,2,4, LI Shuo1,2, LI Zhigang1,2,4, ZHANG Qifen1,2,4, LIU Xinyu5
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. Key Laboratory of Marine Robotics, Liaoning Province, Shenyang 110169, China; 5. Guangdong Institute of Intelligent Unmanned System, Guangzhou 511458, China
王轶群, 田启岩, 陆洋, 李硕, 李智刚, 张奇峰, 刘鑫宇. 面向北京2022年冬奥会水下火炬传递的新型机器人[J]. 机器人, 2022, 44(5): 538-545.DOI: 10.13973/j.cnki.robot.220161.
WANG Yiqun, TIAN Qiyan, LU Yang, LI Shuo, LI Zhigang, ZHANG Qifen, LIU Xinyu. The New Robots for Underwater Torch Relay at the Beijing 2022 Winter Olympic Games. ROBOT, 2022, 44(5): 538-545. DOI: 10.13973/j.cnki.robot.220161.
Abstract:For the underwater torch relay at the Beijing 2022 Winter Olympic Games, an underwater variable structure robot (VSR) and an amphibious robot (AR) are designed, and the control scheme for the underwater torch relay is proposed. It is an important issue in torch relay control to compensate the composite disturbance caused by robotic arms (including torches) motion and environmental current, and a robotic arm with a burning torch will produce more significant influence on the free-floating UUV (unmanned underwater vehicle). To above concerns, a control method for underwater torch relay based on adaptive control strategy is proposed, which identifies statics and current hydrodynamic parameters online, compensates the control disturbance in advance to achieve high-precision attitude and position control for UUV. Finally, the underwater torch relay between robots is achieved for the first time in the Olympic Games history at the Beijing 2022 Winter Olympic Games.
[1] 李硕,刘健,徐会希,等.我国深海自主水下机器人的研究现状[J].中国科学:信息科学, 2018, 48(9):1152-1164. Li S, Liu J, Xu H X, et al. Research status of autonomous underwater vehicles in China[J]. Science China:Information Sciences, 2018, 48(9):1152-1164. [2] Zhang Q F, Wang H L, Li B, et al. Development and sea trials of a 6000m class ROV for marine scientific research[C]//2018 OCEANS. Piscataway, USA:IEEE, 2018. DOI:10.1109/OCEANSKOBE.2018.8559232. [3] Zereik E, Bibuli M, Mišković N, et al. Challenges and future trends in marine robotics[J]. Annual Reviews in Control, 2018, 46:350-368. [4] 李硕,曾俊宝,王越超.自治/遥控水下机器人北极冰下导航[J].机器人, 2011, 33(4):509-512. Li S, Zeng J B, Wang Y C. Navigation under the Arctic ice by autonomous&remotely operated underwater vehicle[J]. Robot, 2011, 33(4):509-512. [5] Simetti E, Campos R, di Vito D, et al. Sea mining exploration with an UVMS:Experimental validation of the control and perception framework[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(3):1635-1645. [6] Marani G, Choi S K, Yuh J. Underwater autonomous manipulation for intervention missions AUVs[J]. Ocean Engineering, 2009, 36(1):15-23. [7] Ribas D, Ridao P, Turetta A, et al. I-AUV mechatronics integration for the TRIDENT FP7 project[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(5):2583-2592. [8] Bonin-Font F, Oliver G, Wirth S, et al. Visual sensing for autonomous underwater exploration and intervention tasks[J]. Ocean Engineering, 2015, 93(1):25-44. [9] Sartore C, Campos R, Quintana J, et al. Control and perception framework for deep sea mining exploration[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2019:6348-6353. [10] Heshmati-Alamdari S, Bechlioulis C P, Karras G C, et al. Cooperative impedance control for multiple underwater vehicle manipulator systems under lean communication[J]. IEEE Journal of Oceanic Engineering, 2021, 46(2):447-465. [11] 张奇峰,张艾群.基于能源消耗最小的自治水下机器人-机械手系统协调运动研究[J].机器人, 2006, 28(4):444-447,452. Zhang Q F, Zhang A Q. Coordinated motion of an autonomous underwater vehicle-manipulator system based on energy consumption minimization[J]. Robot, 2006, 28(4):444-447,452. [12] 白云飞,张奇峰,范云龙,等.基于能耗优化的深海电动机械臂轨迹规划[J].机器人, 2020, 42(3):301-308. Bai Y F, Zhang Q F, Fan Y L, et al. Trajectory planning of deep-sea electric manipulator based on energy optimization[J]. Robot, 2020, 42(3):301-308. [13] 唐元贵,王健,陆洋,等."海斗号"全海深自主遥控水下机器人参数化设计方法与试验研究[J].机器人, 2019, 41(6):697-705. Tang Y G, Wang J, Lu Y, et al. Parametric design method and experimental research on Haidou full-depth ocean autonomous and remotely-operated vehicle[J]. Robot, 2019, 41(6):697-705. [14] Wang J, Tang Y G, Chen C X, et al. Terrain matching localization for hybrid underwater vehicle in the Challenger Deep of the Mariana Trench[J]. Frontiers of Information Technology&Electronic Engineering, 2020, 21(5):749-759. [15] Ding N N, Tang Y G, Jiang Z B, et al. Station-keeping control of autonomous and remotely-operated vehicles for free floating manipulation[J]. Journal of Marine Science and Engineering, 2021, 9(11). DOI:10.3390/jmse9111305. [16] Bai X J, Shang J Z, Luo Z R, et al. Development of amphibious biomimetic robots[J]. Journal of Zhejiang University (Science A), 2022, 23(3):157-187. [17] 唐元贵,张艾群,俞建成,等.两栖机器人轮桨腿驱动机构多目标优化设计[J].机器人, 2009, 31(3):276-280. Tang Y G, Zhang A Q, Yu J C, et al. Multi-objective optimization design for the wheel-propeller-leg driving mechanism of an amphibious robot[J]. Robot, 2009, 31(3):276-280. [18] Fossen T I. Handbook of marine craft hydrodynamics and motion control[M]. 2nd ed. Hoboken, USA:Wiley, 2021.