The Electromagnetic Underwater Synthetic Jet Actuator for Attitude Adjustment of Underwater Robot
JIA Lianchao1,2, HU Zhiqiang2, GENG Lingbo2,3, YI Ruiwen2
1. Institute of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
2. The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:The existing underwater synthetic jet actuators mainly adopt mechanical transmission mode such as cam mechanism, the mechanical structure is complex, and the stroke is not adjustable. For these problems, an electromagnetic underwater synthetic jet actuator with simple mechanical structure and adjustable stroke is designed. The electromagnetic actuator produces synthetic jet by the piston in a straight line reciprocating motion driven by voice coil actuator. A series of thrust experimental studies for the actuator are carried out under different cavity nozzle diameters, different piston vibration frequencies and different piston displacements. The experiments show that the synthetic jet average thrust is inversely proportional to the nozzle diameter and proportional to piston vibration frequency and piston displacement. The efficiency of the actuator increase when the nozzle diameter increases. The results show that the electromagnetic underwater synthetic jet actuator can produce the average thrust, which is a novel type of underwater robot attitude adjustment.
[1] Krueger P S. The significance of vortex ring formation and nozzle exit over-pressure to pulsatile jet propulsion[D]. Oakland, USA:California University, 2010.
[2] Moslemi A A, Krueger P S. Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle[J]. Bioinspiration & Biomimetics, 2010, 5(3):No.036003.
[3] 马杰,陈志华,孙晓晖.射流控制条件超声速尾翼弹的气动特性[J].工程力学,2016,33(9):250-256.Ma J, Chen Z H, Sun X H. The aerodynamic characteristics of a supersonic finned projectile under the condition of jet control[J]. Engineering Mechanics, 2016, 33(9):250-256.
[4] Krueger P S, Gharib M. The significance of vortex ring formation to the impulse and thrust of a starting jet[J]. Physics of Fluids, 2003, 15(5):1271-1281.
[5] 杨瑞,罗振兵,夏智勋.高超声速导弹等离子体合成射流控制数值研究[J].航空学报,2016,37(6):1722-1732.Yang R, Luo Z B, Xia Z X. Numerical study of plasma synthetic jet control for hypersonic missile[J]. Aeronautical Journal, 2016, 37(6):1722-1732.
[6] 刘汝兵,牛中国,王萌萌.等离子体射流控制机翼气动力矩的实验研究[J].工程力学,2016,33(3):232-238.Liu R B, Niu Z G, Wang M M. Aerodynamic moments control of wing model using plasma jet[J]. Engineering Mechanics, 2016, 33(3):232-238.
[7] Krueger P S, Dabiri J O, Gharib M. Vortex ring pinchoff in the presence of simultaneously initiated uniform background co-flow[J]. Physics of Fluids, 2003, 15(7):49-52.
[8] 常雪峰,陈幼平,艾武.音圈直线电动机设计控制及应用综述[J].微电机,2008,41(11):66-69.Chang X F, Chen Y P, Ai W. Review on design, control and application of voice coil linear motor[J]. Micromotor, 2008, 41(11):66-69.
[9] 张宝铭,王春茹.高精度音圈电机[J].微电机,1995,28(1):50-54.Zhang B M, Wang C R. High precision voice coil motor[J]. Micromotor, 1995, 28(1):50-54.
[10] Mohseni K. Pulsatile vortex generators for low-speed maneuvering of small underwater vehicles[J]. Ocean Engineering, 2006, 33(16):2209-2223.
[11] 罗振兵,夏智勋,易仕和.电激励因素影响合成射流的实验研究[J].推进技术,2005,26(5):420-424.Luo Z B, Xia Z X, Yi S H. Experimental study on the influence of electric excitation factors on synthetic jet[J]. Propulsion Technology, 2005, 26(5):420-424.
[12] Krieg M, Coley C, Hart C, et al. Synthetic jet thrust optimization for application in underwater vehicles[D]. Denver, USA:University of Colorado, 2005.
[13] Krieg M, Mohseni K. Dynamic modeling and control of biologically inspired vortex ring thrusters for underwater robot locomotion[J]. IEEE Transactions on Robotics, 2010, 26(3):542-554.
[14] Krieg M, Mohseni K. Thrust characterization of a bio-inspired vortex ring thruster for locomotion of underwater robots[J] IEEE Journal of Oceanic Engineering, 2008, 33(2):123-132.
[15] Thomas A P. Exploration into the feasibility of underwater synthetic jet propulsion[D]. Oakland, USA:California University, 2007.
[16] Robert W, Whittlesey, John O. Optimal vortex formation in a self-propelled vehicle[J]. Journal of Fluid Mechanics, 2013, 737(4):78-104.
[17] Thomas A M, Abraham J P. Numerical simulation of circular synthetic jets with asymmetric forcing profiles[J]. Open Mechanical Engineering Journal, 2010, 4(1):1-7.
[18] Krueger P S, Dabiri J O, Gharib M. The formation number of vortex rings formed in uniform background co-flow[J]. Journal of Fluid Mechanics, 2006, 556(556):147-166.
[19] Li S. A numerical study of micro synthetic jet and its applications in thermal management[D]. Atlanta, USA:Georgia Institute of Technology, 2005.