Research on a Novel End-effector for Self-mobile Space Manipulator
HAN Liangliang1, HE Xiangyang1,2, YANG Jian1, CHEN Meng1
1. Aerospace System Engineering Shanghai, Shanghai 201108, China;
2. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
韩亮亮, 赫向阳, 杨健, 陈萌. 一种自移动空间机械臂末端执行器的研制[J]. 机器人, 2016, 38(6): 720-726.DOI: 10.13973/j.cnki.robot.2016.0720.
HAN Liangliang, HE Xiangyang, YANG Jian, CHEN Meng. Research on a Novel End-effector for Self-mobile Space Manipulator. ROBOT, 2016, 38(6): 720-726. DOI: 10.13973/j.cnki.robot.2016.0720.
Abstract:In order to satisfy the requirements of small and medium self-mobile space manipulator to operate and walk on the space station, a novel end-effector and its grapple interface with characteristics of miniaturization, large-tolerance and high stiffness connection are developed. The end-effector can accomplish multiple functions with a single driving mechanism, such as capturing, rigidization, releasing and electrical connection. Considering the requirement of the tolerance condition and locking performance, the key parameters of the end-effector are designed. In the virtual prototype built in ADAMS, dynamic simulation of capturing and rigidization is analyzed. The function of the end-effector is verified by the prototype experiment, proving the feasibility of the design and the correctness of the simulation.
[1] Rembala R, Ower C. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience[J]. Acta Astronautica, 2009, 65(7/8): 912-920.
[2] Thronson H, Akin D, Grunsfeld J, et al. The evolution and promise of robotic in-space servicing[C]//AIAA SPACE 2009 Conference & Exposition. 2009.
[3] Inaba N, Oda M. Autonomous satellite capture by a space robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2000: 1169-1174.
[4] Xu Y S, Brown H B Jr, Friedman M, et al. Control system of the self-mobile space manipulator[J]. IEEE Transactions on Control Systems Technology, 1994, 2(3): 207-219.
[5] Laryssa P, Lindsay E, Layi O, et al. International Space Station robotics: A comparative study of ERA, JEMRMS and MSS[C]//7th ESA Workshop on Advanced Space Technologies for Robotics and Automation. Noordwijk, Netherlands: ESA, 2006.
[6] Hunter D G. The Space Station Freedom special purpose dexterous manipulator (SPDM)[C]//Proceedings of National Telesystems Conference. Piscataway, USA: IEEE, 1991: 371-376.
[7] Rubinger B, Fulford P, Gregoris L, et al. Self-adapting robotic auxiliary hand (SARAH) for SPDM operations on the International Space Station//Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space. 2001.
[8] Liu H, Tan Y S, Liu Y W, et al. Development of Chinese large-scale space end-effector[J]. Journal of Central South University of Technology, 2011, 18(3): 600-609.
[9] 谭益松,刘伊威,刘宏,等.大型空间末端执行器在轨操作运输舱策略[J].机械工程学报,2011,47(3):109-115.Tan Y S, Liu Y W, Liu H, et al. Transfer vehicle cargo manipulating strategy in orbit using large-scale space end-effector[J]. Journal of Mechanical Engineering, 2011, 47(3): 109-115.
[10] Zhu Y Y, Gao X H, Xie Z W, et al. Development of a gripper for Chinese space robot[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA: IEEE, 2006: 1465-1470.
[11] 洪汝渝.六轴机器人柔顺控制的研究[J].机器人,2000,22(2):143-147.Hong R Y. A study of the compliance control of six-DOF robots[J]. Robot, 2000, 22(2): 143-147.
[12] 裴未迟,李耀刚,李运红.基于虚拟样机技术-ADAMS的冲击力模型[J].河北理工大学学报:自然科学版,2008,30(4):59-63.Pei W C, Li Y G, Li Y H. The impact force models based on the virtual prototype-ADAMS[J]. Journal of Hebei Polytechnic University: Natural Science Edition, 2008, 30(4): 59-63.