熊中刚, 叶振环, 贺娟, 陈连贵, 令狐金卿. 基于免疫模糊PID 的小型农业机械路径智能跟踪控制[J]. 机器人, 2015, 37(2): 212-223. DOI: 10.13973/j.cnki.robot.2015.0212
引用本文: 熊中刚, 叶振环, 贺娟, 陈连贵, 令狐金卿. 基于免疫模糊PID 的小型农业机械路径智能跟踪控制[J]. 机器人, 2015, 37(2): 212-223. DOI: 10.13973/j.cnki.robot.2015.0212
XIONG Zhonggang, YE Zhenhuan, HE Juan, CHEN Liangui, LINGHU Jinqing. Small Agricultural Machinery Path Intelligent Tracking Control Based on Fuzzy Immune PID[J]. ROBOT, 2015, 37(2): 212-223. DOI: 10.13973/j.cnki.robot.2015.0212
Citation: XIONG Zhonggang, YE Zhenhuan, HE Juan, CHEN Liangui, LINGHU Jinqing. Small Agricultural Machinery Path Intelligent Tracking Control Based on Fuzzy Immune PID[J]. ROBOT, 2015, 37(2): 212-223. DOI: 10.13973/j.cnki.robot.2015.0212

基于免疫模糊PID 的小型农业机械路径智能跟踪控制

Small Agricultural Machinery Path Intelligent Tracking Control Based on Fuzzy Immune PID

  • 摘要: 为实现复杂环境下小型农业机械田间作业时的路径跟踪控制,提出了基于免疫模糊PID(比例-积分-微分)的智能路径跟踪控制方法.首先,路径跟踪控制被分解为自动直线导航和自动转向控制任务,并分别构建了能够实现自动导航的模糊控制器和基于免疫模糊PID控制的自动转向方法.该设计在无人驾驶高速插秧机硬件系统基础上,开发了基于双激光源定位技术、电子罗盘和角度传感器的自动导航控制系统.其次,根据自动导航控制系统构造和工作原理,提出了直线和曲线路径跟踪的方法.最后,利用Matlab/Simulink仿真平台和插秧机的运动学模型对所设计的路径跟踪控制原理和模糊控制器进行了有效性验证,同时完成了包括直线和曲线的路径跟踪试验.当插秧机以1m/s的速度进行直线跟踪时,最大跟踪偏差只有4cm,平均跟踪偏差为0.84cm;当以同样的速度做曲线跟踪时,曲线路径跟踪时的最大偏差为0.6m,平均跟踪偏差控制在12cm以内.仿真和试验结果表明,该套控制系统能够有效地控制无人驾驶高速插秧机按预定路径行走.

     

    Abstract: An intelligent path tracking control method is proposed based on fuzzy immune PID (proportional-integraldifferential), to realize path tracking control for small agricultural machinery in complex environment. Firstly, a path tracking control task is decomposed into linear automatic navigation control task and automatic steering control task, and a fuzzy controller for automatic navigation and an automatic steering control method based on fuzzy immune PID are constructed. An automatic navigation control system is developed with dual laser source localization technology, electronic compass and angle sensor based on the hardware system of the unmanned high speed transplanter. Secondly, the straight line and the curve line path tracking methods are proposed based on the machinery construction and working principle of the automatic navigation control system. At last, the effectiveness of the path tracking control principle and fuzzy controller design is verified by using Matlab/Simulink simulation platform and the transplanter kinematics model, and the straight line and the curve line path tracking experiments are also completed. When a transplanter makes the linear tracking at 1 m/s, the maximum deviation is only 4 cm, and the average tracking error is 0.84 cm; when it makes the curve line path tracking at the same speed, the maximum deviation is 0.6 m, and the average tracking error is within 12 cm. Simulation and experiment results show that the unmanned high-speed transplanter based on this control system can effectively track the predefined path.

     

/

返回文章
返回