Mechanism Analysis and Experiments of Liquid-drop Micromanipulator
ZHANG Qin1, GAN Yuming1, HUANG Weijun1, AOYAMA Hisayuki2
1. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China;
2. Department of Mechanical Engineering & Intelligent Systems, University of Electro-Communications, Tokyo 182-8585, Japan
The liquid-drop micromanipulator is composed of a fine tube and six tungsten rods surrounding the tube. Liquid is injected into the tube, and then droplet will be formed at the end of micromanipulator. The liquid-drop micromanipulator can pick up tiny target with the surface tension of the droplet, adjust its orientation or release it by controlling the liquid bridge force which varies with the liquid bridge shape. Mechanical model for the working process of the liquid-drop micromanipulator is established, then the method and physical process of picking up the tiny target, adjusting its orientation and releasing it by the liquid-drop micromanipulator are discussed in detail. Furthermore, the mechanism, acting mode and conditions of all micro forces acting on the process of micro-operation are analyzed, as well as influencing factors on liquid-drop micromanipulator performance. Finally, experiments are carried out to verify the feasibility of the analysis method.
[1] Clévy C, Hubert A, Agnus J, et al. A micromanipulation cell including a tool changer[J]. Journal of Micromechanics and Microengineering, 2005, 15(10): S292-S301.[2] Bordatchev E V, Nikumb S K. Microgripper: Design, finite element analysis and laser microfabrication[C]//Proceedings of the International Conference on MEMS, NANO and Smart Sys-tems. Piscataway, USA: IEEE, 2003: 308-313.[3] Giouroudi I, Hötzendorfer H, Kosel J, et al. Development of a microgripping system for handling of microcomponents[J]. Precision Engineering, 2008, 32(2): 148-152. [4] Suzuki A, Arai T, Mae Y, et al. Automated micro handling[C]//Computational Intelligence in Robotics and Automation. Piscataway, USA: IEEE, 2003: 348-353.[5] Debéda H, Freyhold T V, Mohr J, et al. Development of miniaturized piezoelectric actuators for optical applications realized using LIGA technology[J]. IEEE Journal of Microelectromechanical Systems, 1999, 8(3): 258-263. [6] Micallef R. Overview of vacuum and gripper end effectors[J]. Robotics Engineering, 1986, 8(2): 5-8.[7] Zesch W, Brunner M, Weber A. Vacuum tool for handling microobjects with a nanorobot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 1997: 1761-1766.[8] Huang X H, Liu C, Wang M. An automatic vacuum microgripper[C]//8th World Congress on Intelligent Control and Automation. Piscataway, USA: IEEE, 2010: 5528-5532.[9] Arai F, Fukuda T. Adhesion-type micro endeffector for micromanipulation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 1997: 1794-1801.[10] Driesen W, Varidel T, Regnier S. Micro manipulation by adhesion with two collaborating mobile micro robots[J]. Journal of Micromechanics and Microengineering, 2005, 15(10): S259-S267.[11] Grutzeck H. Investigations of the capillary effect for gripping silicon chips[J]. Microsystem Technologies, 2005, 11(2/3): 194-203.[12] 韩江义,游有鹏,王化明,等. 夹钳式力反馈遥微操作系统的设计与试验[J].机器人,2010,32(2):185-200.Han J Y, You Y P, Wang H M, et al. Design and experiment of clamp type force-feedback tele-micromanipulation system[J]. Robot, 2010, 32(2): 185-200.[13] Tanikawa T, Arai T, Ojala P, et al. Two-finger micro hand[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 1995: 1674-1679.[14] Feddema J T, Xavier P, Brown R. Micro-assembly planning with van der Waals force[C]//IEEE International Symposium on Assembly and Task Planning. Piscataway, USA: IEEE, 1999: 32-38.[15] Saito S, Himeno H, Takahashi K. Electrostatic detachment of an adhering particle from a micromanipulated probe[J]. Journal of Applied Physics, 2003, 93(4): 2219-2224. [16] Rong W B, Liu T C, Wang L F. A method for micro-sphere manipulation based on capillary force control[C]//2nd International Conference on Intelligent Human-Machine Systems and Cybernetics. Piscataway, USA: IEEE, 2010: 26-28.[17] Sato K, Ito K, Hata S. Self-alignment of microparts using liquid surface tension-behavior of micropart and alignment characteristics[J]. Precision Engineering, 2003, 27(1): 42-50. [18] Haga T, Mizono T, Takasaki M, et al. Micro-assembly usingliquid surface tension[J]. Transactions of the Japan Society ofMechanical Engineers, 2010, 76(761): 69-75.[19] Hirata S, Shigeta T, Aoyama H. Basic study of high DOF micromanipulation by surface tension using the multi-needle-type capillary[C]//IEEE International Conference onRobotics and Biomimetics. Piscataway, USA: IEEE, 2011: 739-743.[20] 刘俊.基于液滴的微操作机械手研究[D].广州:华南理工大学,2013.Liu J. Research on a liquid-drop micro-manipulator[D]. Guangzhou:South China University of Technology, 2013.[21] 张勤,刘俊,黄维军,等.液滴机械手的数值仿真与试验研究[J].哈尔滨工业大学学报,2014,46(1):97-103.Zhang Q, Liu J, Huang W J, et al. Simulation and experiment ofmicro-manipulator based on liquid-drop[J].Journal of Harbin Institute ofTechnology, 2014, 46(1): 97-103.[22] 高世桥,刘海鹏.毛细力学[M].北京:科学出版社,2010.Gao S Q, Liu H P. Capillary mechanics[M]. Beijing: Science Press, 2010.