In order to effectively increase the load carrying capacity of free-floating space robot, a multi-constrained multi-objective trajectory optimization method based on MOPSO (multi-objective particle swarm optimization) algorithm is proposed. Combined with the established dynamics model of space robot system under load carrying condition, load maximization is transformed into the multi-constrained multi-objective trajectory planning problem which simultaneously satisfy minimization of joint torque, base disturbances and system energy. The corresponding mathematical model of MOP (multi-objective optimization problem) is established. The Pareto solution set meeting the requirements of load maximization is solved by MOPSO algorithm which tackles constraint conditions effectively. By simulation, the availiablity of this method is proved.
[1] Coleshill E, Oshinowo L, Rembala, et al. Dextre: Improving maintenance operations on the international space station[J]. Acta Asronautica, 2009, 64(9/10): 869-874.[2] Yoshida K. Space robot dynamics and control: To orbit, from orbit, and future[C]//Robotics Research-International Symposium. Berlin, Germany: Springer-Verlag, 2000: 449-456.[3] 梁斌,杜晓东,李成,等.空间机器人非合作航天器在轨服务研究进展[J].机器人,2012,34(2):242-256.Liang B, Du X D, Li C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2): 242-256.[4] Korayem M H, Ghariblu H. Maximum allowable load on wheeled mobile manipulators imposing redundancy constraints[J]. Robotics and Autonomous Systems, 2003, 44(2): 151-159. [5] Crane C D, Duffy J. A dynamic analysis of a spatial manipulator to determine payload weight[J]. Journal of Robotic Systems, 2003, 20(7): 355-371. [6] Korayem M H, Alamdari A, Haghighi R, et al. Determining maximum load-carrying capacity of robots using adaptive robust neural controller[J]. Robotica, 2011, 28(7): 1083-1093.[7] Korayem M H, Nikoobin A, Azimirad V. Maximum load carrying capacity of mobile manipulators: Optimal control approach[J]. Robotica, 2009, 27(1): 147-159. [8] Heavy payload[J]. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(5): 1-8.[9] Aghili F, Namvar M. Scaling inertia properties of a manipulator payload for 0-g emulation of spacecraft[J]. International Journal of Robotics Research, 2009, 28(7): 883-894. [10] Wang C Q, Wu P F, Zhou X, et al. Composite sliding mode control for a free-floating space rigid-flexible coupling manipulator system[J]. International Journal of Advanced Robotic Systems, 2013, 10: 1-10.[11] Korayem M H, Nikoobin A. Maximum payload path planning for redundant manipulator using indirect solution of optimal control problem[J]. The International Journal of Advanced Manufacturing Technology, 2009, 44(7/8): 725-736.[12] Saravanan R, Ramabalan S, Balamurugan C. Evolutionary optimal trajectory planning for industrial robot with payload constraints[J]. The International Journal of Advanced Manufacturing Technology, 2008, 38(11/12): 1213-1226.[13] Wang C Y E, Timoszyk W K, Bobrow J E. Payload maximization for open chained manipulators: Finding weightlifting motions for a Puma 762 robot[J]. IEEE Transactions on Robotics and Automation, 2001, 17(2): 218-224. [14] Jia Q X, Liu Y, Chen G, et al. Maximum load path planning for space manipulator in point-to-point task[C]//8th IEEE Conference on Industrial Electronics and Applications. Piscataway, USA: IEEE, 2013: 988-993.[15] Huang P F, Liu G, Yuan J P, et al. Multi-objective optimal trajectory planning of space robot using particle swarm optimization [M]//Advances in Neural Networks. Berlin, Germany: Springer-Verlag, 2008: 171-179.[16] 吴剑威,史士财,刘宏,等.空间机器人目标捕获过程中的载体姿态扰动优化[J].机器人,2011,33(1):16-21.Wu J W, Shi S C, Liu H, et al. Spacecraft attitude disturbance optimization of space robot in target capturing process[J]. Robot, 2011, 33(1): 16-21.[17] Gong D, Zhang J, Zhang Y. Multi-objective particle swarm optimization for robot path planning in environment with danger sources[J]. Journal of Computers, 2011, 6(8): 1554-1561.[18] Masehian E, Sedighizadeh D. Multi-objective robot motion planning using a particle swarm optimization model[J]. Journal of Zhejiang University: Science C, 2010, 11(8): 607-619. [19] Pires E J S, de Moura Oliveira P B, Machado J A T. Multi-objective genetic manipulator trajectory planner[M]// Applications of Evolutionary Computing. Berlin, Germany: Springer-Verlag, 2004: 219-229.[20] Xu Y, Shum H Y. Dynamic control and coupling of a free-flying space robot system[J]. Journal of Robotic Systems, 1994, 11(7): 573-589. [21] Wang L T, Ravani B. Dynamic load carrying capacity of mechanical manipulators-Part I: Problem formulation[J]. Journal of Dynamic Systems Measurement and Control, 1988, 110(1): 46-52. [22] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279. [23] 王明,黄攀峰,刘正雄,等.自由漂浮空间机器人最小基座反作用轨迹规划[J].宇航学报,2011,32(10):2152-2157.Wang M, Huang P F, Liu Z X, et al. Trajectory planning for minimizing base reaction of free-floating space robot[J]. Journal of Astronautics, 2011, 32(10): 2152-2157.[24] Knowles J D, Corne D W. Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000, 8(2): 149-172.