To recover measurement quickly after robot collision in robotic online visual measurement system, two simple and feasible methods to recalibrate the tool center point (TCP) of robot quickly are proposed. When there is a robot collision in the industry field, only several measurements are performed by moving the robot, then the tool coordinate is recalibrated and the robot TCP is recovered accurately, which can effectively avert the complex work of re-teaching the robot's measurement trajectory. The tool coordinate and TCP of the robot are defined in this paper first, based on the structure parameters of the light plane in visual sensor. Then the reference sphere based tool coordinate calibration method and common point deviation based calibration method are presented respectively. Simulation experiment testifies that the two methods can recover the robot tool coordinate and TCP quickly, and meet the demand of recovery measurement after robot collision in robotic visual measurement system.
[1] Onuh S, Bennett N, Baker J. Rapid prototyping: Practical approach to enabling reverse engineering[C]//Proceedings of the SPIE, vol.4566. Bellingham, USA: SPIE, 2001: 145-151.[2] Yang R Q, Cheng S, Yang W, et al. Robust and accurate surface measurement using structured light[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(6): 1275-1280. [3] 张广军.视觉测量[M].北京:科学出版社,2008:175-205. Zhang G J. Vision measurement[M]. Beijing: Science Press, 2008: 175-205.[4] Liu C J, Yang X Y, Zhu J G, et al. Flexible coordinate measurement system based on industrial robot for car body-in-white[J]. Journal of Optoelectronics · Laser, 2006, 17(2): 207-210.[5] Wang J C, Wang T M, Yang Y, et al. Robot hand-eye calibration using unscented Kalman filtering[J]. Robot, 2011, 33(5): 621-627.[6] Wang J C, Wang T M, Yang Y, et al. Nonlinear optimal robot hand-eye calibration[J]. Journal of Xi’an Jiaotong University, 2011, 45(9): 15-20,89.[7] Ren Y J, Zhu J G, Yang X Y, et al. The design and realization of a sort of robot vision measure system[C]//Proceedings of the SPIE, vol.6344. Bellingham, USA: SPIE, 2006: 63442Zl ?63442Z-6.[8] Liu C J, Zhu J G, Yang S H, et al. Car body in white inspection system with machine vision[J]. Automotive Engineering, 2000, 22(6): 373-376.[9] 吴斌,薛婷,邾继贵,等.任意位姿平面靶标实现立体视觉 传感器标定[J].光电子· 激光,2006,17(11):1293-1296. Wu B, Xue T, Zhu J G, et al. Calibrating stereo visual sensor with free-position planar pattern[J]. Journal of Optoelectronics · Laser, 2006, 17(11): 1293-1296.[10] 吴斌,叶声华,周富强,等. 视觉传感器中摄像机的虚拟 三维靶标标定法[J].天津大学学报:自然科学版,2001, 34(3):312-315. Wu B, Ye S H, Zhou F Q, et al. Camera calibration method based on virtual 3D target in the vision sensor[J]. Journal of Tianjin University, 2001, 34(3): 312-315.[11] Tsai R Y, Lenz R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. IEEE Transactions on Robotics and Automation, 1989, 5(3): 345-358.