[1] 黄如训,苏镇培.脑卒中[M].北京:人民卫生出版社,2001:1-2,298.Huang R X, Su Z P. Stroke[M]. Beijing: People's Medical Publishing House, 2001: 1-2,298.[2] 江先志.驱动关节在康复机器人中的应用[D].武汉:华中科技大学,2011.Jiang X Z. Servo control of joint driven by two pneumatic muscles in opposing pair configuration for rehabilitation robot[D]. Wuhan: Huazhong University of Science and Technology, 2011.[3] 范海珠.周良辅:脑卒中筛查与防治指南推广[EB/OL]. (2012-05-16) [2012-12-02]. http://www.cmt.com.cn/detail/ 46087.html. Fan H Z. Zhou Liangfu: Extension of screening and prevention guide of stroke[EB/OL]. (2012-05-16) [2012-12-02]. http://www.cmt.com.cn/detail/46087.html.[4] Zhang H, Austin H, Buchanan S, et al. Feasibility studies of robot-assisted stroke rehabilitation at clinic and home settings using RUPERT[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2011.[5] Meadmore K L, Cai Z L, Tong D, et al. Upper limb stroke rehabilitation: the effectiveness of stimulation assistance through iterative learning (SAIL)[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2011.[6] Heart and Stroke Foundation of Canada. (2007) Stroke statistics[EB/OL]. [2012-12-02]. http://www.heartandstroke.ca.[7] Kwakkel G, Wagenaar R C, Twisk J W R, et al. Intensity of leg and arm training after primary middle-cerebral-artery stroke: A randomised trial[J]. Lancet, 1999, 354(9174): 191-196. [8] Fasoli S E, Krebs H I, Stein J, et al. Effects of robotic therapy on motor impairment and recovery in chronic stroke[J]. Archives of Physical Medicine and Rehabilitation, 2003, 84(4): 477-482. [9] Charles S K, Krebs H I, Volpe B T, et al. Wrist rehabilitation following stroke: Initial clinical results[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2005: 13-16.[10] Krebs H I, Dipietro L, Levy-Tzedek S, et al. A paradigm shift for rehabilitation robotics[J]. IEEE Engineering in Medicine and Biology Magazine, 2008, 27(4): 61-70. [11] Lum P S, Burgar C G, van der Loos M, et al. Use of the MIME robotic system to retrain multi-joint reaching in post-stroke hemiparesis: Why some movement patterns work better than others[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2005: 511-514.[12] Lum P S, Burga C G, Shor P C. Use of the MIME robotic system to retrain multi-joint reaching in post-stroke hemiparesis: Why some movement patterns work better than others[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology. Piscataway, USA: IEEE, 2003: 1475-1478.[13] Burgar C G, Lum P S, Shor P C, et al. Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience[J]. Journal of Rehabilitation Research and Development, 2000, 37(6): 663-673.[14] Kahn L E, Zygman M L, Rymer W Z, et al. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study[J]. Journal of NeuroEngineering and Rehabilitation, 2006, 3: No.12.[15] Reinkensmeyer D J, Kahn L E, Averbuch M, et al. Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM guide[J]. Journal of Rehabilitation Research and Development, 2000, 37(6): 653-662.[16] Amirabdollahian F, Gradwell E, Loureiro R, et al. Effects of the GENTLE/S robot mediated therapy on the outcome of upper limb rehabilitation post-stroke: Analysis of the battle hospital data[C]//8th International Conference on Rehabilitation Robotics. 2003: 55-58.[17] Harwin W, Loureiro, R; Amirabdollahian, F, et al. The GENTLE/S project: A new method of delivering neuro-rehabilitation[C]//6th European Conference for the Advancement of Assistive Technology. Amsterdam, Netherlands: IOS Press, 2001: 36-41.[18] Rosati G, Gallina P, Masiero S. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(4): 560-569. [19] Kemna S, Culmer P R, Jackson A E, et al. Developing a user interface for the iPAM stroke rehabilitation system[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2009: 879-884.[20] Lam P, Hebert D, Boger J, et al. A haptic-robotic platform for upper-limb reaching stroke therapy: Preliminary design and evaluation results[J]. Journal of NeuroEngineering and Rehabilitation, 2008, 5: No.5.[21] Kan P, Huq R, Hoey J. The development of an adaptive upper-limb stroke rehabilitation robotic system[J]. Journal of NeuroEngineering and Rehabilitation, 2011, 8: No.33[22] Haraguchi M, Kikuchi T, Jin Y, et al. 3-D/quasi-3-D rehabilitation systems for upper limbs using ER actuators with high safety[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2007: 1482-1487.[23] Haraguchi M, Kikuchi Y, Jin Y, et al. 3-D rehabilitation systems for upper limbs using ER actuators/brakes with high safety: "MUL", "Robotherapist" and "PLEMO"[C]//17th International Conference on Artificial Reality and Telexistence. Los Alamitos, USA: IEEE Computer Society, 2007: 258-263.[24] Herder J L, Vrijlandt N, Antonides T, et al. Principle and design of a mobile arm support for people with muscular weakness[J]. Journal of Rehabilitation Research and Development, 2006, 43(5): 591-604. [25] Robertson J V G, Jarrasse N, Roby-Brami A. Rehabilitation robots: A compliment to virtual reality[J]. Schedae, 2010, 6(1): 77-94.[26] Zhang Y B, Wang Z X, Ji L H, et al. The clinical application of the upper extremity compound movements rehabilitation training robot[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2005: 91-94.[27] Xu B G, Peng S, Song A G, et al. Robot-aided upper-limb rehabilitation based on motor imagery EEG[J]. International Journal of Advanced Robotic Systems, 2011, 8(4): 88-97.[28] Yang Y, Wang L, Tong J, et al. Arm rehabilitation robot impedance control and experimentation[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2006: 914-918.[29] Mao K, Li X Y, Jiang N F, et al. The design and implementation of the passive upper limb rehabilitation robot based on magnetic powder brakes[C]//International Symposium on IT in Medicine and Education. Piscataway, USA: IEEE, 2011: 341-345.[30] Ju M S, Lin C C K, Lin D H, et al. A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(3): 349-358. [31] Cai Z, Tong D, Meadmore K L, et al. Design & control of a 3D stroke rehabilitation platform[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2011.[32] Sugar T G, He J P, Koeneman E J, et al. Design and control of RUPERT: A device for robotic upper extremity repetitive therapy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3): 336-344. [33] Balasubramanian S, Wei R H, Perez M, et al. RUPERT: An exoskeleton robot for assisting rehabilitation of arm functions[C]//2008 Virtual Rehabilitation. Piscataway, USA: IEEE, 2008: 163-167.[34] Zhang H, Austin H, Buchanan S, et al. Feasibility study of robot-assisted stroke rehabilitation at home using RUPERT[C]//IEEE/ICME International Conference on Complex Medical Engineering. Piscataway, USA: IEEE, 2011: 604-609.[35] Rosen J, Perry J C, Manning N, et al. The human arm kinematics and dynamics during daily activities-Toward a 7 DOF upper limb powered exoskeleton[C]//International Conference on Advanced Robotics. Piscataway, USA: IEEE, 2005: 532-539.[36] Perry J C, Rosen J, Burns S. Upper-limb powered exoskeleton design[J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(4): 408-417. [37] Yu W, Rosen J. A novel linear PID controller for an upper limb exoskeleton[C]//IEEE Conference on Decision and Control. Piscataway, USA: IEEE, 2010: 3548-3553.[38] Sanchez R, Reinkensmeyer D, Shah P, et al. Monitoring functional arm movement for home-based therapy after stroke[C]// Annual International Conference of the IEEE Engineering in Medicine and Biology. Piscataway, USA: IEEE, 2004: 4787-4790.[39] Sanchez Jr R J, Wolbrecht E, Smith R, et al. A pneumatic robot for re-training arm movement after stroke: Rationale and mechanical design[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2005: 500-504.[40] Pehlivan A U, Celik O, O'Malley M K. Mechanical design of a distal arm exoskeleton for stroke and spinal cord injury rehabilitation[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2011: 5975428.[41] Ren Y P, Park H S, Zhang L Q. Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2009: 761-765.[42] Ball S J, Brown I E, Scott S H. MEDARM: A rehabilitation robot with 5DOF at the shoulder complex[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, USA: IEEE, 2007.[43] Rahman M H, Ouimet T K, Saad M, et al. Development and control of a wearable robot for rehabilitation of elbow and shoulder joint movements[C]//Annual Conference on IEEE Industrial Electronics Society. Piscataway, USA: IEEE, 2010: 1506-1511.[44] Kiguchi K, Hayashi Y. An EMG-based control for an upper-limb power-assist exoskeleton robot[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42(4): 1064-1071. [45] Gopura R A R C, Kiguchi K. Mechanical designs of active upper-limb exoskeleton robots state-of-the-art and design difficulties[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2009: 178-187.[46] Umemura A, Saito Y, Fujisaki K. A study on power-assisted rehabilitation robot arms operated by patient with upper limb disabilities[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2009: 451-456.[47] Nef T, Riener R. ARMin-Design of a novel arm rehabilitation robot[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2005: 57-60.[48] Nef T, Mihelj M, Riener R. ARMin: A robot for patient-cooperative arm therapy[J]. Medical and Biological Engineering and Computing, 2007, 45(9): 887-900. [49] Mihelj M, Nef T, Riener R. ARMin II-7 DoF rehabilitation robot: Mechanics and kinematics[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2007: 4120-4125.[50] Yoon J, Novandy B, Yoon C H, et al. A 6-DOF gait rehabilitation robot with upper and lower limb connections that allows walking velocity updates on various terrains[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(2): 201-215. [51] Frisoli A, Salsedo F, Bergamasco M, et al. A force-feedback exoskeleton for upper-limb rehabilitation in virtual reality[J]. Applied Bionics and Biomechanics, 2009, 6(2): 115-126. [52] Frisoli A, Borelli L, Montagner A, et al. Arm rehabilitation with a robotic exoskeleleton in virtual reality[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2007: 631-642.[53] Oblak J, Cikajlo I, Matjacic Z. Universal haptic drive: A robot for arm and wrist rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(3): 293-302. [54] Li Q L, Wang D Y, Du Z J, et al. sEMG based control for 5 DOF upper limb rehabilitation robot system[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2006: 1305-1310.[55] 李庆玲.基于sEMG信号的外骨骼式机器人上肢康复系统研究[D].哈尔滨:哈尔滨工业大学,2009.Li Q L. Study on sEMG based exoskeletal robot for upper limbs rehabilitation[D]. Harbin: Harbin Institute of Technology, 2009.[56] Xing K X, Xu Q, He J P, et al. A wearable device for repetitive hand therapy[C]//2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA: IEEE, 2008: 919-923.[57] Xiong C H, Jiang X Z, Sun R L, et al. Control methods for exoskeleton rehabilitation robot driven with pneumatic muscles[J]. Industrial Robot, 2009, 36(3): 210-220. [58] Jiang X Z, Huang X H, Xiong C H, et al. Position control of a rehabilitation robotic joint based on neuron proportion-integral and feedforward control[J]. Journal of Computational and Nonlinear Dynamics, 2012, 7(2): 024502.[59] 广州一康医疗设备实业有限公司.肢体智能反馈训练系统A2[EB/OL]. [2012-12-02].http://wenku.baidu.com/view/ dcb4833e376baf1ffc4fad7b.html. Guangzhou Yikang Medical Equipment Industry Co. Ltd. A2 intelligent feedback training system for limbs[EB/OL]. [2012-12-02]. http://wenku.baidu.com/view/ dcb4833e376baf1ffc4fad7b.html.[60] Han J D, Ding Q C, Xiong A B, et al. A novel EMG model for the estimation and tracking control of continuous joint movements[J]. IEEE Transactions on Robotics, 2011, 4: 2891-2897.[61] 吕超.上肢偏瘫康复机器人研究[D].上海:上海交通大学,2011. Lü C. Research of a hemiplegia rehabilitation robot for upper-limb[D]. Shanghai: Shanghai Jiao Tong University, 2011.[62] Wang J H, Jiang Z B, Wang X F, et al. Kinematics simulation of upper limb rehabilitant robot based on virtual reality techniques[J]. Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2011: 6681-6683.[63] Mao K, Jiang N F, Meng F C, et al. The design and implementation of the passive upper limb rehabilitation robot based on magnetic powder brakes[C]//2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce. Piscataway, USA: IEEE, 2011: 341-345.[64] 胡宇川,季林红.从医学角度探讨偏瘫上肢康复训练机器人的设计[J].中国临床康复,2004,8(34):7754-7756.Hu Y C, Ji L H. Designing the rehabilitation training for hemiplegic upper-limb from the medical sciences[J]. Chinese Journal of Clinic Rehabilitation, 2004, 8(34): 7754-7756.[65] Pratt G A, Williamson M M. Series elastic actuators[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 1995: 399-406.[66] Robinson D W, Pratt J E, Paluska D J, et al. Series elastic actuator development for a biomimetic walking robot[C]// IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, USA: IEEE, 1999: 561-568. |