For autonomous capture of non-cooperative spin targets in on-orbit service, a simplified model of the target is built based on the operation characteristics of autonomous capture and the motion characteristics analysis of spin targets. Then, the motion simulation requirements of spin targets are proposed. On this basis, the ground simulation scheme for spin targets and two methods of motion simulation based on 6-DOF (degree of freedom) industrial robot are presented, i.e. the conventional simulation method based on manipulator end motion and the spin simulation method based on manipulator shoulder singularity. Finally, these two methods are introduced and simulated respectively. The simulation results show their feasibility and validity.
[1] Aghili F. A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics[J]. IEEE Transactions on Robotics, 2012, 28(3): 634-649. [2] Liang B, Li C, Xue L J, et al. A Chinese small intelligent space robotic system for on-orbit servicing[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2006: 4603-4607.[3] Yoshida K. Engineering test satellite VII flight experiments for space robot dynamics and control: Theories on laboratory test beds ten years ago, now in orbit[J]. International Journal of Robotics Research, 2003, 22(5): 321-335. [4] Aghili F. Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2009: 2365-2372.[5] 王汉磊,解永春.自由漂浮机械臂抓取翻滚目标的自适应控制策略[J]. 空间控制技术与应用,2009,35(5):6-12. Wang H L, Xie Y C. Adaptive control scheme for the capture of a tumbling spacecraft using free-floating space manipulators[J]. Aerospace Control and Application, 2009, 35(5): 6-12.[6] Yoshida K, Dimitrov D, Nakanishi H. On the capture of tumbling satellite by a space robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2006: 4127-4133.[7] Nishida S I, Kawamoto S. Strategy for capturing of a tumbling space debris[J]. Acta Astronautica, 2011, 68(1/2): 113-120.[8] Aghili F. Optimal control for robotic capturing and passivation of a tumbling satellite with unknown dynamics[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, VA, USA: AIAA, 2008: 1-21.[9] Yoshikawa S, Yamada K. Impulsive control for angular momentum management of tumbling spacecraft[J]. Acta Astronautica, 2007, 60(10/11): 810-819.[10] Pringle R Jr. Tumbling motions of an artificial satellite[J]. AIAA Journal, 1965, 3(6): 1087-1093. [11] 李巍,任顺清,赵洪波.三轴转台误差对陀螺仪标定精确度的影响[J]. 电机与控制学报,2011,15(10):101-106. Li W, Ren S Q, Zhao H B. Influence of three-axis turntable error on gyro calibration accuracy[J]. Electric Machines and Control, 2011, 15(10): 101-106.[12] 陶景桥,孙小松,李明.自旋卫星测试转台精度分析[J]. 空间控制技术与应用,2010,36(2):20-24. Tao J Q, Sun X S, Li M. Accuracy analysis for spin satellite test turn-table[J]. Aerospace Control and Application, 2010, 36(2): 20-24.[13] Kawamoto S, Matsumoto K, Wakabayashi S. Ground experiment of mechanical impulse method for uncontrollable satellite capturing[C/CD]//6th International Symposium on Artificial Intelligence and Robotics & Automation in Space. 2001: 1-8.[14] 徐福祥.用地球磁场和重力场成功挽救风云一号(B)卫星的控制技术[J]. 宇航学报,2001,22(2):1-11. Xu F X. Technique of successful rescue of FY-1B meteorological satellite by using the geomagnetic field and the gravitational field[J]. Journal of Astronautics, 2001, 22(2): 1-11.[15] 熊有伦.机器人技术基础[M].14版. 武汉:华中科技大学出版社,2010:26-29. Xiong Y L. Fundamental of robotics[M]. 14th ed. Wuhan: Huazhong University of Science and Technology Press, 2010: 26-29.