[1] Weinland D, Ronfard R, Boyer E. A survey of vision-based methods for action representation, segmentation and recognition[J]. Computer Vision and Image Understanding, 2011, 115(2): 224-241. [2] Niebles J C, Wang H, Li F F. Unsupervised learning of human action categories using spatial-temporal words[J]. International Journal of Computer Vision, 2008, 79(3): 299-318. [3] Laptev I. On space-time interest points[J]. International Journal of Computer Vision, 2005, 64(2/3): 107-123.[4] Escobar M J, Kornprobst P. Action recognition via bio-inspired features: The richness of center-surround interaction[J]. Computer Vision and Image Understanding, 2012, 116(5): 593-605. [5] Wang H, Klaser A, Schmid C, et al. Action recognition by dense trajectories[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2011: 3169-3176.[6] Yan X S, Luo Y P. Recognizing human actions using a new descriptor based on spatial-temporal interest points and weighted-output classifier[J]. Neurocomputing, 2012, 87(15): 51-61.[7] Benmokhtar R. Robust human action recognition scheme based on high-level feature fusion[J/OL]. Multimedia Tools and Applications, 2012. [2012-04-10]. http://www.springerlink.com/content/m706w676h2906126/.[8] Thi T H, Cheng L, Zhang J, et al. Integrating local action elements for action analysis[J]. Computer Vision and Image Understanding, 2012, 116(3): 378-395. [9] Wang J, Chen Z Y, Wu Y. Action recognition with multiscale spatio-temporal contexts[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2011: 3185-3192.[10] Ali S, Shah M. Human action recognition in videos using kinematic features and multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(2): 288-303. [11] Yang J C, Yu K, Gong Y H, et al. Linear spatial pyramid matching using sparse coding for image classification[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2009: 1794-1801.[12] Wang J J, Yang J C, Yu K, et al. Locality-constrained linear coding for image classification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2010: 3360-3367.[13] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. [14] Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044. [15] Mairal J, Bach F, Ponce J, et al. Discriminative learned dictionaries for local image analysis[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2008: 1-8.[16] Mairal J, Bach F, Ponce J, et al. Supervised dictionary learning[C]//Advances in Neural Information Processing Systems. Cambridge, CA, USA: MIT Press, 2009: 1033-1040.[17] Mairal J, Leordeanu M, Bach F, et al. Discriminative sparse image models for class-specific edge detection and image interpretation[C]//European Conference on Computer Vision. Berlin, Germany: Springer-Verlag, 2008: 43-56.[18] Boureau Y L, Bach F, LeCun Y,et al. Learning mid-level features for recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2010: 2559-2566.[19] Zhang Q, Li B X. Discriminative K-SVD for dictionary learning in face recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2010: 2691-2698.[20] Bishop C M. Pattern recognition and machine learning[M]. Berlin, Germany: Springer-Verlag, 2006: 186-189.[21] Lee H, Battle A, Raina R, et al. Efficient sparse codingalgorithms[C]//Advances in Neural Information Processing Systems.Cambridge, CA, USA: MIT Press, 2007: 801-808.[22] Aharon M, Elad M, Bruckstein A. K-SVD: An algorithm fordesigning of overcomplete dictionaries for sparserepresentations[J]. IEEE Transactions on Signal Processing, 2006,54(11): 4311-4322. [23] Mairal J, Bach F, Ponce J, et al. Online learning for matrix factorizationand sparse coding[J]. Journal of Machine Learning Research, 2010,11(3): 19-60.[24] Mallat S G, Zhang Z F. Matching pursuits with time-frequencydictionaries[J]. IEEE Transactions on Signal Processing, 1993,41(12): 3397-3415. [25] Laptev I, Marszalek M, Schmvol C, et al. Learning realistic human actions frommovies[C]//IEEE Conference on Computer Vision and PatternRecognition. Piscataway, NJ, USA: IEEE, 2008: 1-8. |