孟丽霞, 陶霖密, 孙富春, 刘华平, 褚涛. 基于脑机接口与双激光雷达的移动车导航系统[J]. 机器人, 2012, 34(4): 449-454,459..
MENG Lixia, TAO Linmi, SUN Fuchun, LIU Huaping, CHU Tao. Vehicle Navigation System Based on BCI and Dual Laser Radar. ROBOT, 2012, 34(4): 449-454,459..
A machine intelligence assistant BCI (brain-computer interface) navigation method for an outdoor mobile robot is put forward in view of the problem of BCI's low signal-to-noise ratio, bad accuracy and long time delay. A vehicle navigation system based on BCI and dual laser radar is designed and implemented. Firstly, an improved angle potential field method based on dual laser radar is used for local path planning, then with navigation intention from BCI system, control commands are generated by fusion decision and used for driving a electric vehicle with modified mechanical system. Experiments show that the system can realize intelligent obstacle avoidance and human-machine collaborative navigation based on environmental obstacle information and brain-machine interface control intention, and it has higher accuracy, tolerance and robustness.
[1] 张钹,王田苗,邓志东,等. 机器人发展战略研究报告:历程、技术、产业、标准与政策[M]. 北京:兵器工业出版社,2009. Zhang B, Wang T M, Deng Z D, et al. Report on robot development strategy study: History, technology, industry, standard and policy[M]. Beijing: Weapon Industry Press, 2009.
[2] 蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题[J]. 控制与决策,2002,17(4): 385-390. Cai Z X, He H G, Chen H. Some issues for mobile robots navigation under unknown environments[J]. Control and Decision, 2002, 17(4): 385-390.
[3] 刘辉,杜玉晓,彭杰,等.脑-机接口技术发展[J]. 电子科技,2011,24(5): 116-119. Liu H, Du Y X, Peng J, et al. A review of brain-computer interface development[J]. Electronic Science and Technology, 2011, 24(5): 116-119.
[4] Wessberg J, Stambaugh C R, Kralik J D, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates[J]. Nature, 2000, 408(6810): 361-365.
[5] Lebedev M A, Nicolelis M A L. Brain-machine interfaces: Past, present and future[J]. Trends in Neurosciences, 2006, 29(9): 536-546.
[6] Millan Jd R, Renkens F, Mourio J, et al. Noninvasive brain-actuated control of a mobile robot by human EEG[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1026-1033.
[7] Barbosa A O G, Achanccaray D R, Meggiolaro M A. Activation of a mobile robot through a brain computer interface[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2010: 4815-4821.
[8] Galan F, Nuttin M, Lew E, et al. A brain-actuated wheelchair: Asynchronous and non-invasive brain-computer interfaces for continuous control of robots[J]. Clinical Neurophysiology, 2008, 119(9): 2159-2169.
[9] Iturrate I, Antelis J M, Kuebler A, et al. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation[J]. IEEE Transactions on Robotics, 2009, 25(3): 614-627.
[10] Bell C J, Shenoy P, Chalodhorn R, et al. Control of a humanoid robot by a noninvasive brain-computer interface in humans[J]. Journal of Neural Engineering, 2008, 5(2): 214-220.
[11] 邓志东,李修全,郑宽浩,等. 一种基于SSVEP的仿人机器人异步脑机接口控制系统[J].机器人,2011,33(1): 129-135. Deng Z D, Li X Q, Zheng K H, et al. A humanoid robot control system with SSVEP-based asynchronous brain-commuter interface[J]. Robot, 2011, 33(1): 129-135. [12] 欧青立,何克忠.室外智能移动机器人的发展及其关键技术研究[J].机器人,2000,22(6): 519-526.Ou Q L, He K Z. Research on key techniques and development of outdoor intelligent autonomous mobile robot[J]. Robot, 2000, 22(6): 519-526.
[13] Meng L X, Sun F C, Liu H P, et al. A fusion navigation of double laser radar for intelligent vehicle[J]. Advanced Materials Research, 2012, 346(1): 711-718.