Abstract:Aiming at the problem that robot mission planning hybrid algorithms lack a general architecture,a new interactive bionics-swarm co-evolutionary hybrid algorithm system architecture is presented by using cultural evolutionary double structure idea for reference.The architecture includes the upper ceiling knowledge space based on good-point set genetic algorithm(GGA),the bottom ceiling population space based on discrete particle swarm optimization(DPSO),the top-down influence mechanism and the bottom-up acceptance mechanism,to realize heterogeneous population interaction.Addtionally, customer estimation interface is reserved to realize human-computer interaction.In order to improve particle swarm optimization performance,the population space is initialized with good-point set to distribute the initial particles uniformly in feasible solutions.A novel evolution model is presented and the particle evolution ability index is defined,which increases the population's diversity and improves the algorithm's stability.A neighborhood local search strategy is introduced to enhance search capability of the arithmetic.At last,the heterogeneous interactive cultural hybrid algorithm(HICHA) is tested with TSPLIB standard data.Experimental results show that HICHA is better than the other algorithms in stability,convergence speed and solution quality.HICHA provides a new way for solving the robot detection mission planning problem.
[1] Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm[A].Proceedings of the IEEE International Conference on Systems,Man and Cybernetics[C].Piscataway,NJ,USA:IEEE,1997.4104~4108.
[2] Wang K P,Huang L,Zhou C G,et al.Particle swarm optimization for traveling salesman problem[A].Proceedings of the IEEE International Conference on Machine Learning and Cybernetics[C].Piscataway,NJ,USA:IEEE,2003.1583~1585.
[3] 黄岚,王康平,周春光,等.粒于群优化算法求解旅行商问题[J].吉林大学学报(理学版),2003,41(4):477~480.Huang Lan,Wang Kang-ping,Zhou Chun-guang,et aL Particle swarm optimization for traveling salesman problems[J].Joumal of Jilin University (Science Edition),2003,41(4):477~480.
[4] 肖健梅,李军军,王锡淮.改进微粒群优化算法求解旅行商问题[J].计算机工程与应用.2004,40(35):50~52.Xiao Jian-mei,Li Jun-jun,Wang Xi-huai.A modified particle swarm optimization for traveling salesman problems[J].Computer Engineering and Applications,2004,40(35):50~52.
[5] 王翠茹,张江维,王玥,等.改进粒了群优化算法求解旅行商问题[J] ,华北电力大学学报,2005,32(6):47~51,59.Wang Cui-ru,Zhang Jiang-wei,Wang Yue.et al.Modified particle swarm optimization algorithm for traveling salesman problem[J].Journal of North China Electric Power University,2005,32(6):47~51,59.
[6] Wang Y,Feng X Y,Huang Y X,et al.A novel quantum swarm evolutionary algorithm and its applications[J].Neurocomputing,2007,70(4-6):633~640.
[7] 高尚,韩斌,吴小俊,等.求解旅行商问题的混合粒子群优化算法[J].控制与决策,2004,19(11):1286~1289.Gao Shang,Han Bin,Wu Xiao-jun,et al.Solving traveling salesman problem by hybrid particle swarm optimization algorithm[J].Control and Decision,2004,19(11):1286~1289.
[8] 钟文,蔡荣英.求解二次分配问题的离散粒子群优化算法[J].自动化学报,2007,33(8):871~874.Zhong Yi-wen,Cai Rong-ying.Discrete particle swarm optimization algorithm for QAP[J].Acta Automatica Sinica,2007,33(8):871~874.
[9] 钟一文,杨建刚,宁正元.求解TSP问题的离散粒子群优化算法[J].系统上程理论与实践,2006,26(6):88~94.Zhong Yi-wen,Yang Jian-gang,Ning Zheng-yuan.Discrete particle swarm optimization algorithm for TSP problem[J].Systems Engineering-Theory and Practice,2006,26(6):88~94.
[10] 钟一文,宁正元,蔡荣英,等.一种改进的离散粒子群优化算法[J].小型微型计算机系统,2006,27(10):1893~1896.Zhong Yi-wen,Ning Zheng-yuan,Cai Rong-ying,et al.An improved discrete particle swarm optimization algorithm[J].Minimicro Systems,2006,27(10):1893~1896.
[11] 张铃,张钹.佳点集遗传算法[J].计算机学报,2001,24(9):917~922.Zhang Ling,Zhang Bo.Good point set based genetic algorithm[J].Chinese Journal of Computers,2001,24(9):917~922.
[12] Shi X H,Liang Y C,Lee H P,et al.Particle swarm optimization-based algorithms for TSP and generalized TSP[J].Information Processing Letters,2007,103(5):169~176.
[13] 华罗庚,王元.数论在近似分析中的应用[M].北京:科学出版社,1978.83~85.Hua Luo-geng,Wang Yuan.Application of Number Theory to Approximate Analysis[M].Beijing:Science Press,1978.83~85.
[14] Jiang M,Luo Y P,Yang S Y.Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm[J].Information Processing Letters,2007,102(1):8~16.
[15] Liang Y,Zhou C,Wang Z,et al.An equivalent genetic algorithm based on extended strings and its convergence analysis[J].Information Sciences,2001,138(1-4):119~135.
[16] Georg S.MP-TESTDATA-The TSPLIB symmetric traveling salesman problem instances[EB/OL] ,http://elib.zib.de/pub/mptestdata/tsp/tsplib/tsp/index.html,1995/2008.