Abstract:For RoboCup four-legged league field with symmetrical structure and non-unique features,the global localization accuracy and robustness against noises of four localization methods,including Extended Kalman Filter with data Validation(EKF-V),Multiple Hypothesis Localization(MHL),Monte Carlo Localization(MCL) and Adaptive Monte Carlo Localization(A-MCL),are compared in a simulated field model.The experimental results show that all the algorithms achieve high accuracy when the noise can be estimated.However,MCL and A-MCL are preferable when applying to RoboCup four-legged league due to their robustness against noises.
[1] Cox I J.Blanche-an experiment in guidance and navigation of an autonomous robot vehicle[J]. IEEE Transactions on Robotics and Automation,1991,7(2):193-204.
[2] Quinlan M,Murch C,Moore T,et al.The 2004 NUbots Team Report[R/OL]. http://www.robots.newcastle.edu.au/publications/NUbotFinalReport2004.pdf,2004.
[3] Whaite D,Sammut C,Uther W.Team Report of rUNSWift 2004[R/OL]. http://www,ese.unsw.edu.au/~robocup/2004site/rUNSWift2004.tgz,2004.
[4] Lenser S,Veloso M.Sensor resetting localization for poorly modeled mobile robots[A]. Proceedings of the 2000 IEEE International Conference on Robotics and Automation[C]. Piscataway,NJ,USA:IEEE,2000.1225-1232.
[5] Rofor T,Laue T,Weber M,et al.Team Report of GermanTeam 2005[R/OL]. http://www.germanteam.org/GT2005.pdf,2006.
[6] Gutmann J,Fox D.An experimental comparison of localization methods continued[A] ,Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. Piscataway,NJ,USA:IEEE,2002.454-459.
[7] Kristensen S,Jensfelt P.An experimental comparison of localization methods,the MHL sessions[A]. Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. Piscataway,NJ,USA:IEEE,2003.992-997.
[8] Fox D,Hightower J,Liao L,et al.Bayesian filtering for location estimation[J]. IEEE Pervasive Computing,2003,2(3):24-33.
[9] Welch G,Bishop G.An Introduction to the Kalman Filter[R/OL]. http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf,2004.
[10] Austin J,Jensfelt P.Using multiple Gaussian hypotheses to represent probability distributions for mobile robot localization[A]. Proceedings of the 2000 IEEE International Conference on Robotics and Automation[C]. Piscataway,NJ,USA:IEEE,2000.1036-1041.
[11] Roumeliotis S,Bekey G.Bayesian estimation and Kalman filtering:a unified framework for mobile robot localization[A]. Proceedings of the 2000 IEEE International Conference on Robotics and Automation[C]. Piscataway,NJ,USA:IEEE,2000.2985-2992.
[12] Jensfelt P,Kristensen S.Active global localization for a mobile robot using multiple hypothesis tracking[J]. IEEE Transactions on Robotics and Automation,2001,17(5):748-759.
[13] Fox D,Burgard W,Dellaert F,et al.Monte Carlo localization:efficient position estimation for mobile robots[A]. Proceedings of the Sixteenth National Conference on Artificial Intelligence[C]. USA:AAAI,1999.343-349.
[14] Fox D.Adapting the sample size in particle filters through KLDsampling[J]. The International Journal of Robotics Research,2003,22(12):985-1003.
[15] RoboCup Technical Committee,Sony four legged robot football league rnle book[S/OL]. http://www.tzi.de/41egged/pub/Website/Downloads/Rules2005.pdf,2005.