Robot Calibration Algorithms and Their Application to Polishing Robot
WANG Dong-shu1, LI Guang-yan2, XU Fang3, XU Xin-he1
1. Key Laboratory of Process Industry Automation of Ministry of Education, Northeastern University, Shenyang 110004, China; 2. Building Administration of Shenyang Electric Company, Shenyang 110006, China; 3. Shenyang SIASUN Robotics & Automation Co., Ltd, Shenyang 110168, China
Abstract:This paper introduces the basic principle of robot pose matching and two optimization algorithms,i.e.nonlinear optimization procedure and iterative linearization of the equations,and uses the two optimization algorithms respectively to calibrate the geometrical parameters of a polishing robot.Based on analyzing the factors affecting the robot position error,the algorithms eliminate the parameters which are non-sensitive to position accuracy and whose effects are indistinguishable to others,and repeat the calibration process.The simulation results show that calibration effect is not quite different from the algorithms obtained with the complete parameter set.In some cases,the latter is even better than the former.So it is feasible to calibrate the robot by substituting the complete parameter set with reduced set,with an improved accuracy.
[1] Elatta A Y, Li P G, Fan L Z, et al. An overview of robot calibration[J]. Information Technology Journal, 2004, 3(1):74-78. [2] Chen I M, Yang G L. Kinematic calibration of modular reconfigurable robots using product of exponentials formula [J]. Journal of Robotic Systems, 1997, 14(11):807-821. [3] Chen I M, Yang G L, Tan C T. Local POE model for robot kinematic calibration[J]. Mechanism and Machine Theory, 2001, 36(11-12):1215-1239. [4] Calafiore G, Indri M, Bona B. Robot dynamic calibration:optimal excitation trajectories and experimental parameter estimation [J].Journal of Robotic Systems, 2001, 18(2):55-68. [5] Mielikainen J, Kosskinen I, Handroos H, et al. Positioning of flexible boom structure using neural networks[A]. Proceedings of the 9th International Conference on Computer Analysis of Images and Patterns(Lecture Notes in Computer Science vol. 2124)[C]. Berlin:Springer-Verlag, 2001. 435-442. [6] Tien F L, Grier C I. An on-line relative position and orientation error calibration methodology for work-cell robot operations[J]. Robotics &Computer-integrated Manufacturing, 1997, 13(2):89-99. [7] John H. A comparison of identification techniques for robot calibration[D]. USA:Case Western Reserve University, 1998. [8] 刘振宇.制约机器人向先进制造系统集成若干问题研究[D].沈阳:中国科学院沈阳自动化研究所,2002. [9] Omodei A, Legnani G, Adamini R, et al. Three methodologies for the calibration of industrial manipulators:experimental results on a SCARA robot[J]. Journal of Robotic Systems, 2000, 17(6):291-307. [10] 盛骤,谢式千,潘承毅.概率论与数理统计(第二版)[M].北京:高等教育出版社,1993. [11] Marco A, Steven D. An analytical method to eliminate the redundant parameters in robot calibration [A]. Proceedings of the IEEE Intenational Conference on Robotics and Automation [C]. USA:IEEE, 2000. 3609-3615.