徐瀚, 李静, 陈原, 张荣敏, 高军. 基于螺旋理论的水下机器人矢量推进球面并联机构的运动学建模[J]. 机器人, 2016, 38(6): 738-745,753. DOI: 10.13973/j.cnki.robot.2016.0738
引用本文: 徐瀚, 李静, 陈原, 张荣敏, 高军. 基于螺旋理论的水下机器人矢量推进球面并联机构的运动学建模[J]. 机器人, 2016, 38(6): 738-745,753. DOI: 10.13973/j.cnki.robot.2016.0738
XU Han, LI Jing, CHEN Yuan, ZHANG Rongmin, GAO Jun. Kinematic Modeling of Spherical Parallel Manipulator with VectoredThrust Function for Underwater Robot Based on Screw Theory[J]. ROBOT, 2016, 38(6): 738-745,753. DOI: 10.13973/j.cnki.robot.2016.0738
Citation: XU Han, LI Jing, CHEN Yuan, ZHANG Rongmin, GAO Jun. Kinematic Modeling of Spherical Parallel Manipulator with VectoredThrust Function for Underwater Robot Based on Screw Theory[J]. ROBOT, 2016, 38(6): 738-745,753. DOI: 10.13973/j.cnki.robot.2016.0738

基于螺旋理论的水下机器人矢量推进球面并联机构的运动学建模

Kinematic Modeling of Spherical Parallel Manipulator with VectoredThrust Function for Underwater Robot Based on Screw Theory

  • 摘要: 为设计结构简单、具备旋转运动传递和空间姿态调整双重功能的水下机器人推进机构,采用构造过约束并联机构的方法设计了一种3自由度球面并联矢量推进机构.基于螺旋理论构建了机构的拓扑结构模型,分析了机构的运动特性,计算了机构的位姿正、逆解.在闭链约束方程的基础上运用矢量代数法推导出了机构的雅可比矩阵.利用特征结构配置的解耦法建立了机构速度和加速度的解析模型,并进行了相应的数值算例分析,计算了机构的运动学正、逆解,得到了可达工作空间,并用仿真软件Adams验证了数值计算方法的正确性.设计的矢量推进机构具有较大的偏转范围.

     

    Abstract: To design a simple-structured thruster with rotation transmission and attitude adjustment functions for underwater robots, a method of constructing an over-constrained parallel manipulator is adopted to develop a 3 degree-of-freedom (DOF) spherical parallel manipulator with vectored thrust function. Based on screw theory, topological structure model of the manipulator is constructed to analyze the motion characteristics of the mechanism and calculate the forward and inverse solutions of the manipulator pose. Jacobian matrix of the manipulator is deduced by employing the vector algebra method on the basis of closed chain constraint equations. The analytical models of the manipulator velocity and acceleration are established by decoupling the configuration of feature structure, and then corresponding numerical calculation examples are given. The forward and inverse solutions of the manipulator kinematics are calculated to obtain the reachable workspace, and the correctness of the proposed numerical calculation method is verified by Adams software. The proposed manipulator with vectored thrust function has a large deflection range.

     

/

返回文章
返回