Abstract:A novel evaluation method of granularity partition for functional modules based on robot technology middleware (RTM) is proposed. Firstly, the comprehensive weights for pertinence indexes of structures and functions of modules are calculated by fuzzy analytical hierarchy process (FAHP), and correlation matrix of the system is established. A fuzzy dendrogram clustering algorithm is proposed to obtain the module partition schemes for the robot system under different granularities. To construct multi-attribute decision matrix, the models of cohesion and coupling for each scheme are structured as two sources of evidences for DS (Dempster-Shafer) evidence theory based on the principle of module independence. Then the trust intervals of every decision scheme are sorted by a preference ordering method for intervals to obtain the optimal module partition scheme for the robot system. The evaluation method is verified by applying it to the robot 3D mapping system. The system implementation and results show that the method is effective and feasible.
[1] Ando N, Suehiro T, Kitagaki K, et al. RT-middleware: Distributed component middleware for RT[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2005: 3555-3560.
[2] 魏小凤,胡继承,罗永恩.基于超图模型的软件模块自动划分[J].计算机工程,2016,42(1):71-76.Wei X F, Hu J C, Luo Y E. Automatic software module partition based on hypergraph model[J]. Computer Engineering, 2016, 42(1): 71-76.
[3] Liu F Y, Song S J. Research on module division method based on complex network theory[C]//5th International Conference on Semantics, Knowledge and Grid. Piscataway, USA: IEEE, 2009: 432-433.
[4] Teng X Y, Zhang T J. Module partition method based on hybrid fuzzy clustering[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA: IEEE, 2010: 333-338.
[5] Kreng V B, Lee T P. Modular product design with grouping genetic algorithm——A case study[J]. Computers and Industrial Engineering, 2004, 46(3): 443-460.
[6] Mitchell B S, Mancoridis S. On the automatic modularization of software systems using the bunch tool[J]. IEEE Transactions on Software Engineering, 2006, 32(3): 193-208.
[7] Baca J, Hossain S G M, Dasgupta P, et al. ModRED: Hardware design and reconfiguration planning for a high dexterity modular self-reconfigurable robot for extra-terrestrial exploration[J]. Robotics and Autonomous Systems, 2014, 62(7): 1002-1015.
[8] Dutta A, Dasgupta P, Baca J, et al. searchUCSG: A fast coalition structure search algorithm for modular robot reconfiguration under uncertainty[J]. Robotica, 2014, 32(2): 225-244.
[9] 崔馨丹,朱延河,王晓露,等.模块化机器人的双输出CPG网络调相运动控制[J].哈尔滨工业大学学报,2013,45(7):47-52.Cui X D, Zhu Y H, Wang X L, et al. Two-output CPG phased network locomotion control for modular robot[J]. Journal of Harbin Institute of Technology, 2013, 45(7): 47-52.
[10] 曹燕军,葛为民,张华瑾.一种新型模块化自重构机器人结构设计与仿真研究[J].机器人,2013,35(5):568-575, 606.Cao Y J, Ge W M, Zhang H J. Structure design and simulation analysis of an innovative modular self-reconfigurable robot——360bot[J]. Robot, 2013, 35(5): 568-575,606.
[11] Zhao J, Cui X D, Zhu Y H, et al. UBot: A new reconfigurable modular robotic system with multimode locomotion ability[J]. Industrial Robot, 2012, 39(2): 178-190.
[12] 魏洪兴,刘淼,王田苗,等.一种新的自组装模块化群体机器人——对接机构设计与自组装控制[J].机器人,2010,32(5):614-621.Wei H X, Liu M, Wang T M, et al. A novel self-assembly modular swarm robot: Docking mechanism design and self-assembly control[J]. Robot, 2010, 32(5): 614-621.
[13] Toral S L, Barrero F, Cortes F, et al. Analysis of embedded CORBA middleware performance on urban distributed transportation equipments[J]. Computer Standards & Interfaces, 2013, 35(1): 150-157.
[14] Elkady A, Sobh T. Robotics middleware: A comprehensive literature survey and attribute-based bibliography[J]. Journal of Robotics, 2012: No.959013.
[15] Jia S M, Dong Z Y, Li X Z, et al. Distributed intelligent assistance robotic system with sensor networks based on robot technology middleware[J]. International Journal of Distributed Sensor Networks, 2014: No.908260.
[16] 王可,贾松敏,徐涛,等.基于混合位姿估计模型的移动机器人三维地图创建方法[J].控制与决策,2015,30(8):1504-1508.Wang K, Jia S M, Xu T, et al. Mobile robot 3D map building based on hybrid pose estimation model[J]. Control and Decision, 2015, 30(8): 1504-1508.
[17] 王日君,张进生,葛培琪,等.面向设计的产品模块划分方法[J].农业机械学报,2009,40(9):182-186.Wang R J, Zhang J S, Ge P Q, et al. Module partition method for product design[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(9): 182-186.
[18] Su X Y, Mahadevan S, Xu P D, et al. Dependence assessment in human reliability analysis using evidence theory and AHP[J]. Risk Analysis, 2015, 35(7): 1296-1316.
[19] Wang Y M, Yang J B, Xu D L. A preference aggregation method through the estimation of utility intervals[J]. Computers & Operations Research, 2005, 32(8): 2027-2049.
[20] 唐朝晖,刘美丽,刘金平,等.基于泡沫图像特征和物元可拓模型的锑浮选工况识别[J].控制与决策,2015,30(8):1485-1490.Tang C H, Liu M L, Liu J P, et al. Performance recognition of antimony flotation based on froth image features and matter-element extension model[J]. Control and Decision, 2015, 30(8): 1485-1490.
[21] Xu Z S, Liao H C. Intuitionistic fuzzy analytic hierarchy process[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(4): 749-761.
[22] Jha P C, Bali V, Narula S, et al. Optimal component selection based on cohesion & coupling for component based software system under build-or-buy scheme[J]. Journal of Computational Science, 2014, 5(2): 233-242.