Stable Control for AUV's Near-bottom and Low-speed Sailing Based on Vertical Thruster
ZHENG Rong1, MA Yantong1,2, ZHANG Bin1, HAN Xiaojun1, AN Jiayu1
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
2. Northeastern University, Shenyang 110819, China
郑荣, 马艳彤, 张斌, 韩晓军, 安家玉. 基于垂向推进方式的AUV低速近底稳定航行[J]. 机器人, 2016, 38(5): 588-592.DOI: 10.13973/j.cnki.robot.2016.0588.
ZHENG Rong, MA Yantong, ZHANG Bin, HAN Xiaojun, AN Jiayu. Stable Control for AUV's Near-bottom and Low-speed Sailing Based on Vertical Thruster. ROBOT, 2016, 38(5): 588-592. DOI: 10.13973/j.cnki.robot.2016.0588.
Abstract:For the problem of insufficient flap rudder force of autonomous underwater vehicle (AUV) when navigating at low speed, a low-speed near-bottom stable control navigation scheme based on vertical thruster is presented. Based on the navigating speed, the thrust characteristics of the flap rudder and vector propeller are analyzed comparatively. Then the layout scheme of vertical thruster units in fore and aft grooves is designed. And AUV vertical motion control can be achieved by tuning PID (proportional-integral-derivative) parameters and optimizing control strategy. Finally, a large number of lake trials show that the vertical thruster can achieve better near-bottom fixed-depth sailing controllability at low speed compared with flap rudder thruster, and the vehicle can realize stable navigation with mean square errors of height within 0.1 m and pitch within 0.5°.
[1] Nag A, Patel S S, Akbar S A. Fuzzy logic based on depth control of an autonomous underwater vehicle[C]//2013IEEE International Multi Conference on Automation, Computing, Communication, Control and Compressed Sensing. Piscataway, USA:IEEE, 2013:117-123.
[2] Watson S A, Green P N. Depth control for micro-autonomous underwater vehicles (μAUVs):Simulation and experimentation[J]. International Journal of Advanced Robotic Systems, 2014, 11(1):1-10.
[3] Eddison J F P, Fryer D K. Some aspects of submarine behaviour when on the surface in shallow water[C]//Warship'91 International Symposium on Naval Submarines. 1991.
[4] 万磊,张英浩,孙玉山,等.基于重构容错的智能水下机器人定深运动控制[J].兵工学报,2015,36(4):723-730.Wang L, Zhang Y H, Sun Y S, et al. AUV's depth control based on reconstructive fault-tolerant control[J]. Acta Armamentarii, 2015, 36(4):723-730.
[5] 晏亮,赵琳,程建华.潜艇操纵运动的舵效仿真研究[J].计算机仿真,2009,26(7):12-15.Yan L, Zhao L, Cheng J H. Rudder effects simulation of submarine maneuvering motion[J]. Computer Simulation, 2009, 26(7):12-15.
[6] 龚浩,吴先用,黄宇,等.一种矢量推进方式下的AUV数学建模[J].中国仪器仪表,2015(8):41-44.Gong H, Wu X Y, Huang Y, el at. Mathematical modeling of a kind of AUV with vector thruster[J]. China Instrumentation, 2015(8):41-44.
[7] Wynn R B, Huvenne V A I, Le Bas T P, et al. Autonomous underwater vehicles (AUVs):Their past, present and future contributions to the advancement of marine geoscience[J]. Marine Geology, 2014, 352(S1):451-468.
[8] Anon. Unmanned robot submarine navigates, maps sea floor[J]. Materials Performance, 2008, 47(10):12-13.
[9] 卫民.基于矢量推进器的AUV运动控制系统研究[D].天津:天津大学,2012.Wei M. Research on the control system of the vectored thruster AUV[D]. Tianjin:Tianjin University, 2012.
[10] 张利军,齐雪,赵杰梅,等.垂直面欠驱动自治水下机器人定深问题的自适应输出反馈控制[J].控制理论与应用,2012,29(10):1371-1376.Zhang L J, Qi X, Zhao J M, et al. Depth-keeping control for autonomous underwater vehicle in vertical plane using adaptive output feedback controller[J]. Control Theory & Applications, 2012, 29(10):1371-1376.
[11] 吕欣倍,张铁栋,王聪,等.水下自主航行器舵翼水动力性能分析[J].扬州大学学报:自然科学版,2015,18(3):56-59.Lü X P, Zhang T D, Wang C, et al. Hydrodynamic performance prediction on the rudder wing of autonomous underwater vehicle[J]. Journal of Yangzhou University:Natural Science Edition, 2015, 18(3):56-59.
[12] 吴宝山,潘子英,陈纪军,等.潜艇组合翼舵的水动力非线性特性研究[J].船舶力学,2008,12(1):54-58.Wu B S, Pan Z Y, Chen J J, et al. Investigation on nonlinear characteristics of normal force on stern-plane of submarine by CFD simulation[J]. Journal of Ship Mechanics, 2008, 12(1):54-58.
[13] 郭春雨,杨晨俊,马宁.襟翼舵的敞水及桨后水动力性能研究[J].华中科技大学学报:自然科学版,2008,36(11):108-111.Guo C Y, Yang C J, Ma N. Research of the hydrodynamic performance of flap rudder on open water and behind propeller[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2008, 36(11):108-111.
[14] 孙鲁闽.襟翼舵的开发利用[J].船舶工程,2015,37(9):37-40,44.Sun L M. Design and application of flap-type rudder[J]. Ship Engineering, 2015, 37(9):37-40,44.
[15] 蒋新松,封锡盛,王棣棠.水下机器人[M].沈阳:辽宁科学技术出版社,2000:77-82, 270-286.Jiang X S, Feng X S, Wang D T. Unmanned underwater vehicles[M]. Shenyang:Liaoning Science and Technology Press, 2000:77-82, 270-286.
[16] 刘健,于闯,刘爱民.无缆自治水下机器人控制方法研究[J].机器人,2004,26(1):7-10.Liu J, Yu C, Liu A M. Research on untethered autonomous underwater vehicle control method[J]. Robot, 2004, 26(1):7-10.
[17] 曾俊宝,李硕,李一平,等.便携式自主水下机器人控制系统研究与应用[J].机器人,2016,38(1):91-97.Zeng B J, Li S, Li Y P, et al. Research and application of the control system for a portable autonomous underwater vehicle[J]. Robot, 2016, 38(1):91-97.