A Bridge-type Piezoelectric Microgripper with Integrated Position/Force Sensors
YANG Yiling1, FU Lei1, TIAN Geng1, LOU Junqiang2, WEI Yanding1
1. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
2. College of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
Microgrippers play an important role in micromanipulation and microassembly tasks. Based on the bridge-type mechanisms and parallelogram mechanisms, a compliant piezo-driven microgripper is designed in consideration of its demand for large gripping ranges, parallel movements and integrated position/force sensors. According to mechanical principles and compliant mechanism theory, the theoretical amplification ratio, natural frequency and output coupling ratio of the microgripper are derived. Then, the ANSYS software is used to simulate the amplification ratio, natural frequency and output coupling ratio of the microgripper. Finally, an experimental system is set up to verify the performances of the microgripper. The experimental results demonstrate that the microgripper has a gripping range of 0.345μm~328.2μm, an amplification ratio of 16.4 and a natural frequency of 157.5 Hz. The relative errors of the amplification ratio and the natural frequency between ANSYS simulations and experimental results are 17.7% and 12.9% respectively. The validity of theoretical models and ANSYS simulations are proved by experimental results, and the design objectives of large gripping ranges, parallel movements and integrated position/force sensors are achieved.
[1] Wang D H, Yang Q, Dong H M. A monolithic compliant piezoelectric-driven microgripper:Design, modeling, and testing[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1):138-147. [2] 韩江义,游有鹏,王化明,等.夹钳式力反馈遥微操作系统的设计与试验[J].机器人,2010,32(2):184-189.Han J Y, You Y P, Wang H M, et al. Design and experiments of clamp type force-feedback tele-micromanipulation system[J]. Robot, 2010, 32(2):184-189.[3] Sun X T, Chen W H, Fatikow S, et al. A novel piezo-driven microgripper with a large jaw displacement[J]. Microsystem Technologies, 2015, 21(4):931-942. [4] MacKay R E, Le H R, Clark S, et al. Polymer micro-grippers with an integrated force sensor for biological manipulation[J]. Journal of Micromechanics and Microengineering, 2013, 23(1):No.015005.[5] Barazandeh F, NazariNejad S, Nadafi R D B, et al. Design and microfabrication of a compliant microgripper using nonbrittle and biocompatible material[J]. Proceedings of the Instition of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2013, 227(12):2886-2896. [6] 陈国良,黄心汉,王敏.基于模糊 PD 控制的微操作机械手真空微夹研究[J].华中科技大学学报:自然科学版,2005,33(2):37-40.Chen G L, Huang X H, Wang M. Study of the vacuum micro-tool for micromanipulator based on fuzzy PD control[J]. Journal of Huazhong University of Science and Technology:Nature Science, 2005, 33(2):37-40.[7] 叶鑫,张之敬,孙媛,等.集成微力检测与反馈的双晶片微夹持器[J].兵工学报,2009,30(9):1242-1247.Ye X, Zhang Z J, Sun Y, et al. A bimorph piezoelectric ceramic microgripper integrating micro-force detecting and feedback[J]. Acta Armamentarii, 2009, 30(9):1242-1247.[8] 张然,褚金奎,王海祥,等.具有三层结构的 SU-8 胶 V 形微电热驱动器[J].光学精密工程,2012,20(7):1500-1508.Zhang R, Chu J K, Wang H X, et al. SU-8 chevron electrothermal micro-actuator with three-layer structures[J]. Optics and Precision Engineering, 2012, 20(7):1500-1508.[9] 席文明,钟辉.电磁力驱动的微夹持技术[J].纳米技术与精密工程,2008,6(3):195-198.Xi W M, Zhong H. Micro-tweezer technology driven by electromagnetic force[J]. Nanotechnology and Precision Engineering, 2008, 6(3):195-198.[10] 荣伟彬,谢晖,王家畴,等.一种集成三维微力传感器的微夹持器研制[J].压电与声光,2007,29(2):175-178.Rong W B, Xie H, Wang J C, et al. Development of a micro-gripper integrating tri-axial force sensor[J]. Piezoelectrics & Acoustooptics, 2007, 29(2):175-178.[11] Xiao S L, Li Y M. Visual servo feedback control of a novel large working range micro manipulation system for micro-assembly[J]. Journal of Microelectromechanical Systems, 2014, 23(1):181-190. [12] Mohd Zubir M N, Shirinzadeh B, Tian Y L. Development of novel hybrid flexure-based microgrippers for precision micro-object manipulation[J]. Review of Scientific Instruments, 2009, 80(6):No.065106.[13] 邬亮恩,崔玉国,梁冬泰,等.基于柔性放大机构的压电微夹钳研究[J].压电与声光,2014,36(3):437-440.Wu L E, Cui Y G, Liang D T, et al. Research on piezoelectric micro-gripper based on flexible magnifying mechanism[J]. Piezoelectrics & Acoustooptics, 2014, 36(3):437-440.[14] 陈海初,王振华,李满天,等.两级位移放大微夹持器的研究[J].压电与声光,2005,27(3):300-302.Chen H C, Wang Z H, Li M T, et al. Research on micro-gripper with two grades displacement amplifier[J]. Piezoelectrics & Acoustooptics, 2005, 27(3):300-302.[15] Xu Q S. Design and smooth position/force switching control of a miniature gripper for automated microhandling[J]. IEEE Transactions on Industrial Informatics, 2014, 10(2):1023-1032. [16] Huang H, Zhao H W, Yang Z J, et al. A novel driving principle by means of the parasitic motion of the microgripper and its preliminary application in the design of the linear actuator[J]. Review of Scientific Instruments, 2012, 83(5):No.0550025.