Robot-assisted Minimally Invasive Total Knee Arthroplasty System
ZHANG Yinghao1, LI Weiquan1, CHEN Jiahe1, SONG Guoli2, QI Yansong3, XU Yongsheng3, WANG Junchen1
1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; 2. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 3. Department of Orthopedics and Joints, People's Hospital of Inner Mongolia Autonomous Region, Hohhot 010017, China
Abstract:A robot-assisted osteotomy system for total knee arthroplasty is developed, which realizes accurate modeling of knee anatomical structures, 3-dimensional planning of preoperative osteotomy path, image registration, and intraoperative robot operation with visual navigation. Using multi-modality image fusion and active contour model segmentation technology, the automatic modeling and visualization of a knee joint including articular cartilages are realized. On this basis, 3D interactive technology is adopted to realize preoperative planning of osteotomy path. With the self-developed binocular tracking system, the 3D point cloud of articular bone surface is collected for shape registration with the preoperative 3D model to perform registration between the image space and the robot space. Finally, the robot is guided visually to complete the osteotomy operation. The experimental results show that the comprehensive positioning error of the robot system is 0.87 mm, and the osteotomy operation error is less than 1 mm.
[1] Panjwani T R, Mullaji A, Doshi K, et al.Comparison of functional outcomes of computer-assisted vs conventional total knee arthroplasty: A systematic review and meta-analysis of high-quality, prospective studies[J]. The Journal of Arthroplasty, 2019, 34(3): 586-593. [2] Scott C E H, Turnbull G S, MacDonald D, et al.Activity levels and return to work following total knee arthroplasty in patients under 65 years of age[J]. The Bone & Joint Journal, 2017, 99-B(8): 1037-1046. [3] Du H, Tang H, Gu J M, et al.Patient satisfaction after posterior-stabilized total knee arthroplasty: A functional specific analysis[J]. The Knee, 2014, 21(4): 866-870. [4] Lee B S, Cho H I, Bin S I, et al.Femoral component varus malposition is associated with tibial aseptic loosening after TKA[J]. Clinical Orthopaedics and Related Research, 2018, 476(2): 400-407. [5] 张子安, 张海宁, 李海燕, 等.机器人辅助技术在全膝关节置换手术中的应用[J].中国矫形外科杂志, 2020, 28(11):937-941. Zhang Z A, Zhang H N, Li H Y, et al. Application of robotic assisted technique in total knee arthroplasty[J]. Orthopedic Journal of China, 2020, 28(11): 937-941. [6] Sires J D, Craik J D, Wilson C J.Accuracy of bone resection in MAKO total knee robotic-assisted surgery[J]. The Journal of Knee Surgery, 2021, 34(7): 745-748. [7] Mannan A, Vun J, Lodge C, et al.Increased precision of coronal plane outcomes in robotic-assisted total knee arthroplasty: A systematic review and meta-analysis[J]. The Surgeon, 2018, 16(4): 237-244. [8] Hampp E L, Chughtai M, Scholl L Y, et al.Robotic-arm assisted total knee arthroplasty demonstrated greater accuracy and precision to plan compared with manual techniques[J]. The Journal of Knee Surgery, 2019, 32(3): 239-250. [9] Mason J B, Fehring T K, Estok R, et al.Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery[J]. The Journal of Arthroplasty, 2007, 22(8): 1097-1106. [10] Bargar W L, Bauer A, Börner M.Primary and revision total hip replacement using the Robodoc system[J]. Clinical Orthopaedics and Related Research, 1998(354): 82-91. [11] 雷静桃, 唐明瑶, 王君臣, 等.机器人辅助膝关节置换术的术前规划研究综述[J].机械工程学报, 2017, 53(17):78-91. Lei J T, Tang M Y, Wang J C, et al. Review of the preoperative planning of robot assisted knee arthroplasty[J]. Journal of Mechanical Engineering, 2017, 53(17): 78-91. [12] Jacofsky D J, Allen M.Robotics in arthroplasty: A comprehensive review[J]. The Journal of Arthroplasty, 2016, 31(10): 2353-2363. [13] Wang J C, Sun Z, Ji H L, et al.A fast 3D brain extraction and visualization framework using active contour and modern OpenGL pipelines[J]. IEEE Access, 2019, 7: 156097-156109. [14] Schmid J, Magnenat-Thalmann N.MRI bone segmentation using deformable models and shape priors[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2008: 119-126. [15] Rusu R B, Blodow N, Beetz M.Fast point feature histograms (FPFH) for 3D registration[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2009: 3212-3217. [16] Besl P J, McKay N D.A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. [17] Wold S, Esbensen K, Geladi P.Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1-3): 37-52. [18] Bennett S, Lasenby J.ChESS-Quick and robust detection of chess-board features[J]. Computer Vision and Image Understanding, 2014, 118: 197-210. [19] Lucchese L, Mitra S K.Using saddle points for subpixel feature detection in camera calibration targets[C]//Asia-Pacific Conference on Circuits and Systems. Piscataway, USA: IEEE, 2002: 191-195. [20] Wang J C, Ji X Q, Zhang X H, et al.Real-time robust individual X point localization for stereoscopic tracking[J]. Pattern Recognition Letters, 2018, 112: 138-144. [21] 王君臣, 王田苗, 杨艳, 等.非线性最优机器人手眼标定[J].西安交通大学学报, 2011, 45(9):15-20,89. Wang J C, Wang T M, Yang Y, et al. Nonlinear optimal robot hand-eye calibration[J]. Journal of Xi'an Jiao Tong University, 2011, 45(9): 15-20,89.