Applications and Research Progress of Robot Assisted Eye Surgery
HE Changyan1, YANG Yang1, LIANG Qingfeng2, HAN Shaofeng1
1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China;
2. Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
Abstract:Firstly, the typical eye surgery manipulation is analyzed, and the general design requirements of eye surgical robot is proposed. Secondly, the research progress of eye surgical robot is reviewed at home and abroad, including the robotic systems and the surgical devices. In the end, the key technologies of eye surgical robotic system are summarized including biomechanics analysis of eye tissue, mechanism structure design, multidimensional signal sensing, and precise motion control technology, and the research tendency is analyzed.
[1] Kadonosono K, Yamane S, Arakawa A, et al. Endovascular cannulation with a microneedle for central retinal vein occlusion[J]. JAMA Ophthalmology, 2013, 131(6):783-786.
[2] Singhy S P N, Riviere C N. Physiological tremor amplitude during retinal microsurgery[C]//Proceedings of the IEEE Bioengineering Conference. Piscataway, USA:IEEE, 2002:171-172.
[3] Gupta P K, Jensen P S, de Juan Jr E. Surgical forces and tactile perception during retinal microsurgery[M]//Lecture Notes in Computer Science, Vol.1679. Berlin, Germany:SpringerVerlag, 1999:1218-1225.
[4] Noda Y, Ida Y, Tanaka S, et al. Impact of robotic assistance on precision of vitreoretinal surgical procedures[J]. PLoS ONE, 2013, 8(1). DOI:10.1371/journal.pone.0054116.
[5] Cutler N, Balicki M, Finkelstein M, et al. Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery[J]. Investigative Ophthalmology & Visual Science, 2013, 54(2):1316-1324.
[6] Gijbels A, Willekens K, Esteveny L, et al. Towards a clinically applicable robotic assistance system for retinal vein cannulation[C]//IEEE International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA:IEEE, 2016:284-291.
[7] 梁皓,谭少健.正常成年男性晶状体前囊膜特性的研究[J].眼科研究, 2002(3):257-258. Liang H, Tan S J. Study on the properties of anterior lens capsule in the cadaver eyes of normal adult male[J]. Chinese Journal of Experimental Ophthalmology, 2002(3):257-258.
[8] Brooks Jr H L. Macular hole surgery with and without internal limiting membrane peeling[J]. Ophthalmology, 2000, 107(10):1939-1948.
[9] Riviere C N, Jensen P S. A study of instrument motion in retinal microsurgery[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2000:59-60.
[10] Ergeneman O, Pokki J, Po?epcova V, et al. Characterization of puncture forces for retinal vein cannulation[J]. Journal of Medical Devices, 2011, 5(4). DOI:10.1115/1.4005318.
[11] Guerrouad A, Vidal P. SMOS:Stereotaxical microtelemanipulator for ocular surgery[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology. Piscataway, USA:IEEE, 1989:879-880.
[12] Charles S, Das H, Ohm T, et al. Dexterity-enhanced telerobotic microsurgery[C]//International Conference on Advanced Robotics. Piscataway, USA:IEEE, 1997:5-10.
[13] Jensen P S, Grace K W, Attariwala R, et al. Toward robotassisted vascular microsurgery in the retina[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 1997, 235(11):696-701.
[14] Yu D Y, Cringle S J, Constable I J. Robotic ocular ultramicrosurgery[J]. Australian and New Zealand Journal of Ophthalmology, 1998, 26(S1):S6-S8.
[15] Taylor R H, Funda J, Grossman D D, et al. Remote center-ofmotion robot for surgery:US5397323[P]. 1995-03-14.
[16] Stoianovici D, Whitcomb L L, Mazilu D, et al. Remote center of motion robotic system and method:US7021173[P]. 2006-4-4.
[17] Fleming I, Balicki M, Koo J, et al. Cooperative robot assistant for retinal microsurgery[C]//11th International Conference on Medical Image Computing & Computer-assisted Interventionn. Berlin, Germany:Springer, 2008:543-550.
[18] Uneri A, Balicki M A, Handa J, et al. New steady-hand eye robot with micro-force sensing for vitreoretinal surgery[C]//IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA:IEEE, 2010:814-819.
[19] Rahimy E, Wilson J, Tsao T, et al. Robot-assisted intraocular surgery:Development of the IRISS and feasibility studies in an animal model[J]. Eye, 2013, 27(8):972-978.
[20] Yang Y, Xu C L, Deng S J, et al. Insertion force in manual and robotic corneal suturing[J]. International Journal of Medical Robotics & Computer Assisted Surgery, 2012, 8(1):25-33.
[21] Su P, Deng S J, Huang L, et al. Analysis and evaluation of a robotic trephination in penetrating keratoplasty[J]. Journal of Medical Devices, 2016, 10(2). DOI:10.1115/1.4032869.
[22] Xiao J J, Huang L, Shen L, et al. Design and research of a robotic aided system for retinal vascular bypass surgery[J]. Journal of Medical Devices, 2014, 8(4). DOI:10.1115/1.4027230.
[23] He C Y, Huang L, Yang Y, et al. Research and realization of a master-slave robotic system for retinal vascular bypass surgery[J]. Chinese Journal of Mechanical Engineering, 2018, 31. DOI:10.1186/s10033-018-0278-6.
[24] Chen Y Q, Tao J W, Li L, et al. Feasibility study on robotassisted retinal vascular bypass surgery in an ex vivo porcine model[J]. Acta Ophthalmologica, 2017, 95(6). DOI:10.1111/aos.13457.
[25] Bedem L V D, Hendrix R, Rosielle N, et al. Design of a minimally invasive surgical teleoperated master-slave system with haptic feedback[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA:IEEE, 2009:60-65.
[26] de Smet M D, Meenink T C, Janssens T, et al. Robotic assisted cannulation of occluded retinal veins[J]. PLoS One, 2016, 11(9). DOI:10.1371/journal.pone.0162037.
[27] Hendrix R. Robotically assisted eye surgery:A haptic master console[D]. Eindhoven, Netherlands:Technische Universiteit Eindhoven, 2011.
[28] Edwards T L, Xue K, Meenink H C M, et al. First-in-human study of the safety and viability of intraocular robotic surgery[J/OL]. Nature Biomedical Engineering, 2018. (2018-06-18)[2018-06-23]. https://doi.org/10.1038/s41551-018-0248-4.
[29] Gijbels A, Wouters N, Stalmans P, et al. Design and realisation of a novel robotic manipulator for retinal surgery[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:3598-3603.
[30] Gijbels A, Vander Poorten E B, Stalmans P, et al. Design of a teleoperated robotic system for retinal surgery[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2014:2357-2363.
[31] Gijbels A, Poorten E B V, Gorissen B, et al. Experimental validation of a robotic comanipulation and telemanipulation system for retinal surgery[C]//IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA:IEEE, 2014:144-150.
[32] Donald T. Robot assists with injections for RVO[J]. Retina Today, 2017, 12(3):59-61.
[33] Wei W, Goldman R, Simaan N, et al. Design and theoretical evaluation of micro-surgical manipulators for orbital manipulation and intraocular dexterity[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2007:3389-3395.
[34] Wei W, Goldman R E, Fine H F, et al. Performance evaluation for multi-arm manipulation of hollow suspended organs[J]. IEEE Transactions on Robotics, 2009, 25(1):147-157.
[35] Wei W, Popplewell C, Chang S, et al. Enabling technology for microvascular stenting in ophthalmic surgery[J]. Journal of Medical Devices, 2010, 4(1):167-190.
[36] Ueta T, Yamaguchi Y, Shirakawa Y, et al. Robot-assisted vitreoretinal surgery:Development of a prototype and feasibility studies in an animal model[J]. Ophthalmology, 2009, 116(8):1538-1543.
[37] Bourcier T, Chammas J, Becmeur P H, et al. Robotically assisted pterygium surgery:First human case[J]. Cornea, 2015, 34(10):1329-1330.
[38] Bourges J L, Hubschman J P, Wilson J, et al. Assessment of a hexapod surgical system for robotic micro-macro manipulations in ocular surgery[J]. Ophthalmic Research, 2011, 46(1):25-30.
[39] He X, Gehlbach P, Handa J, et al. Development of a miniaturized 3-DOF force sensing instrument for robotically assisted retinal microsurgery and preliminary results[C]//IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA:IEEE, 2014:252-258.
[40] He X C, Balicki M A, Kang J U, et al. Force sensing microforceps with integrated fiber Bragg grating for vitreoretinal surgery[M]//Proceedings of SPIE, Vol.8218. Bellingham, USA:SPIE, 2012. DOI:10.1117/12.909602.
[41] Gonenc B, Balicki M A, Handa J, et al. Preliminary evaluation of a micro-force sensing handheld robot for vitreoretinal surgery[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2012:4125-4130.
[42] Gonenc B, Tran N, Riviere C N, et al. Force-based puncture detection and active position holding for assisted retinal vein cannulation[C]//IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems. Piscataway, USA:IEEE, 2015:322-327.
[43] Yu H, Shen J H, Joos K M, et al. Design, calibration and preliminary testing of a robotic telemanipulator for OCT guided retinal surgery[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2013:225-231.
[44] Yu H, Shen J H, Shah R J, et al. Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps[J]. Biomedical Optics Express, 2015, 6(2):457-472.
[45] Joos K M, Shen J H. Miniature real-time intraoperative forwardimaging optical coherence tomography probe[J]. Biomedical Optics Express, 2013, 4(8):1342-1350.
[46] Song C, Park D Y, Gehlbach P L, et al. Fiber-optic OCT sensor guided "SMART" micro-forceps for microsurgery[J]. Biomedical Optics Express, 2013, 4(7):1045-1050.
[47] He X C, Balicki M, Gehlbach P, et al. A novel dual force sensing instrument with cooperative robotic assistant for vitreoretinal surgery[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:213-218.
[48] Wei T A, Riviere C N, Khosla P K. An active hand-held instrument for enhanced microsurgical accuracy[C]//3rd International Conference on Medical Image Computing and ComputerAssisted Intervention. Berlin, Germany:Springer-Verlag, 2000:878-886.
[49] MacLachlan R A, Becker B C, Tabares J C, et al. Micron:An actively stabilized handheld tool for microsurgery[J]. IEEE Transactions on Robotics, 2012, 28(1):195-212.
[50] Becker B C, MacLachlan R A, Lobes LA, et al. Position-based virtual fixtures for membrane peeling with a handheld micromanipulator[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:1075-1080.
[51] Becker B C, Yang S, MacLachlan R A, et al. Towards visionbased control of a handheld micromanipulator for retinal cannulation in an eyeball phantom[C]//IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA:IEEE, 2012:44-49.
[52] Latt W T, Tan U X, Shee C Y, et al. A compact hand-held active physiological tremor compensation instrument[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, USA:IEEE, 2009:711-716.
[53] Saxena A, Patel R V. An active handheld device for compensation of physiological tremor using an ionic polymer metallic composite actuator[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:4275-4280.
[54] Chang D, Gu G M, Kim J. Design of a novel tremor suppression device using a linear delta manipulator for micromanipulation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:413-418.
[55] Payne C J, Kwok K W, Yang G Z. An ungrounded handheld surgical device incorporating active constraints with forcefeedback[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:2559-2565.
[56] Hubschman J P, Bourges J L, Choi W, et al. ‘The Microhand’:A new concept of micro-forceps for ocular robotic surgery[J]. Eye, 2010, 24(2):364-367.
[57] 王璐,杨洋,孙繁新,等.基于形状记忆合金的角膜缝合钉的设计[J].机械工程学报, 2010, 46(23):161-165. Wang L, Yang Y, Sun F X, et al. Design of a corneal suturing nail based on shape memory alloy[J]. Chinese Journal of Mechanical Engineering, 2010, 46(23):161-165.
[58] Bergeles C, Kummer M P, Kratochvil B E, et al. Steerable intravitreal inserts for drug delivery:In vitro and ex vivo mobility experiments[M]//Lecture Notes in Computer Science, Vol.6891. Berlin, Germany:Springer-Verlag, 2011:33-40.
[59] Kummer M P, Abbott J J, Kratochvil B E, et al. OctoMag:An electromagnetic system for 5-DOF wireless micromanipulation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2010:1080-1081.
[60] He X C, van Geirt V, Gehlbach P, et al. IRIS:Integrated robotic intraocular snake[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:1764-1769.
[61] Horise Y, He X, Gehlbach P, et al. FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2015:13-16.
[62] Zong G H, Pei X, Yu J J, et al. Classification and type synthesis of 1-DOF remote center of motion mechanisms[J]. Mechanism and Machine Theory, 2008, 43(12):1585-1595.
[63] 宗光华,裴旭,于靖军,等.双平行四杆型远程运动中心机构的设计[J].机械工程学报, 2007, 43(12):103-108. Zong G H, Pei X, Yu J J, et al. Design of double parallelogram remote center of motion mechanisms[J]. Chinese Journal of Mechanical Engineering, 2007, 43(12):103-108.
[64] Huang L, Yang Y, Su P, et al. Type synthesis of 1R1T remote center of motion mechanisms based on pantograph mechanisms[J]. Journal of Mechanical Design, 2016, 138(1). DOI:10.1115/1.4031804.
[65] Rieke N, Tan D J, Amat di San Filippo C, et al. Real-time localization of articulated surgical instruments in retinal microsurgery[J]. Medical Image Analysis, 2016, 34:82-100.
[66] Braun D, Yang S, Martel J N, et al. EyeSLAM:Real-time simultaneous localization and mapping of retinal vessels during intraocular microsurgery[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2018, 14(1). DOI:10.1002/rcs.1848.
[67] Probst T, Maninis K K, Chhatkuli A, et al. Automatic tool landmark detection for stereo vision in robot-assisted retinal surgery[J]. IEEE Robotics and Automation Letters, 2018, 3(1):612-619.
[68] He X C, Balicki M, Gehlbach P, et al. A multi-function force sensing instrument for variable admittance robot control in retinal microsurgery[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2014:1411-1418.