ZHANG Zhongqiang1,2, ZOU Jiao1, DING Jianning1,2, SONG Zhenling1, CHENG Guanggui1,2, WANG Xiaodong1, GUO Liqiang1
1. Micro/Nano Science and Technology Center, Jiangsu University, Zhenjiang 212013, China;
2. Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou 213164, China
Abstract:Firstly, the development and research status of the soft robot is introduced with the emphasis on some main research achievements abroad and at home in the fields of soft robot driving mode and mechanism. Then, the driving modes of the soft robot are concluded as fluid driving, electroactive polymer driving, magnetic rheological elastomer driving, shape memory alloy driving and chemical driving, and so on. The scientific principle of each driving mode and the corresponding typical driving structures are introduced, and the current bottlenecks and the key scientific issues in the development of the soft robot driving technology are clarified and analyzed. Finally, we try to make an outlook to the challenges and development trends of the driving mode research of the soft robot.
[1] Andrikopoulos G, Nikolakopoulos G, Manesis S. A survey on applications of pneumatic artificial muscles[C]//Mediterranean Conference on Control and Automation. Piscataway, USA:IEEE, 2011:1439-1446.
[2] Hannan M W, Walker I D. Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots[J]. Journal of Field Robotics, 2003, 20(2):45-63.
[3] 王绪,费燕琼,许红伟,等.仿尺蠖蠕动模块化软体机器人的设计[J].高技术通讯,2015,25(8/9):829-834. Wang X, Fei Y Q, Xu H W, et al. Design of modular soft robots imitating inchworm peristalsis[J]. Chinese High Technology Letters, 2015, 25(8/9):829-834.
[4] Lin H T, Leisk G G, Trimmer B. GoQBot:A caterpillar-inspired soft-bodied rolling robot[J]. Bioinspiration & Biomimetics, 2011, 6(2):No.026007.
[5] Polygerinos P, Lyne S, Wang Z, et al. Towards a soft pneumatic glove for hand rehabilitation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2014:1512-1517.
[6] Zhao F F, Dohta S, Akagi T, et al. Development of a bending actuator using a rubber artificial muscle and its application to a robot hand[C]//SICE-ICASE International Joint Conference. Piscataway, USA:IEEE, 2007:381-384.
[7] Bahramzadeh Y, Shahinpoor M. A review of ionic polymeric soft actuators and sensors[J]. Soft Robotics, 2014, 1(1):38-52.
[8] Shingo M, Yusuke H, Ryo Y, et al. Self-oscillating gel actuator for chemical robotics[J]. Advanced Robotics, 2008, 22(12):1329-1342.
[9] Tolley M T, Shepherd R F, Karpelson M, et al. An untethered jumping soft robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2014:561-566.
[10] Polygerinos P, Galloway K C, Savage E, et al. Soft robotic glove for hand rehabilitation and task specific training[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:2913-2919.
[11] Polygerinos P, Wang Z, Galloway K C, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics & Autonomous Systems, 2015, 73(C):135-143.
[12] Brown E, Rodenberg N, Amend J, et al. Universal robotic gripper based on the jamming of granular material[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44):18809-18814.
[13] Luo M, Tao W, Chen F, et al. Design improvements and dynamic characterization on fluidic elastomer actuators for a soft robotic snake[C]//IEEE Conference on Technologies for Practical Robot Applications. Piscataway, USA:IEEE, 2014:6pp.
[14] Marchese A D, Komorowski K, Onal C D, et al. Design and control of a soft and continuously deformable 2D robotic manipulation system[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2014:2189-2196.
[15] Shepherd R F, Ilievski F, Choi W, et al. Multigait soft robot[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51):20400-20403.
[16] Jani J M, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 2014, 56(4):1078-1113.
[17] Chen Z. A review on robotic fish enabled by ionic polymer-metal composite artificial muscles[J]. Robotics & Biomimetics, 2017, 4(1):24-37.
[18] Li T, Li G, Liang Y, et al. Fast-moving soft electronic fish[J]. Science Advances, 2017, 3(4):e1602045.
[19] Nishida T, Okatani Y, Tadakuma K. Development of universal robot gripper using MR & fluid[J]. International Journal of Humanoid Robotics, 2016, 13(4):231-235.
[20] Shepherd R F, Stokes A A, Freake J, et al. Using explosions to power a soft robot[J]. Angewandte Chemie, 2013, 52(10):2892-2896.
[21] Park S J, Gazzola M, Park K S, et al. Phototactic guidance of a tissue-engineered soft-robotic ray[J]. Science, 2016, 353(6295):158-162.
[22] Wehner M, Truby R L, Fitzgerald D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617):451-455.
[23] Roche E T, Horvath M A, Wamala I, et al. Soft robotic sleeve supports heart function[J]. Science Translational Medicine, 2017, 9(373):eaaf3925.
[24] Hawkes E W, Blumenschein L H, Greer J D, et al. A soft robot that navigates its environment through growth[J]. Science Robotics, 2017, 2(8):eaan3028.
[25] Rafsanjani A, Zhang Y, Liu B, et al. Kirigami skins make a simple soft actuator crawl[J]. Science Robotics, 2018, 3(15):eaar7555.
[26] Larson C, Peele B, Li S, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 2016, 351(6277):1071-1074.
[27] Zhao H, O'Brien K, Li S, et al. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides[J]. Science Robotics, 2016, 1(1):eaai7529.
[28] Manti M, Hassan T, Passetti G, et al. A bioinspired soft robotic gripper for adaptable and effective grasping[J]. Soft Robotics, 2015, 2(3):107-116.
[29] 俞晓瑾.柔性机械臂的运动学和动力学建模及视觉伺服控制[D].上海:上海交通大学,2013. Yu X J. The kinematic and dynamic modeling and visual servo control of soft robotic manipulator[D]. Shanghai:Shanghai Jiao Tong University, 2013.
[30] 王宁扬,孙昊,姜皓,等.一种基于蜂巢气动网络的软体夹持器抓取策略研究[J].机器人,2016,38(3):371-377. Wang N Y, Sun H, Jiang H, et al. On grasp strategy of honeycomb pneu nets soft gripper[J]. Robot, 2016, 38(3):371-377.
[31] Mosadegh B, Polygerinos P, Keplinger C, et al. Soft robotics:Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Materials, 2014, 24(15):2163-2170.
[32] Lauder G V, Flammang B, Alben S. Passive robotic models of propulsion by the bodies and caudal fins of fish[J]. Integrative & Comparative Biology, 2012, 52(5):576-587.
[33] Alben S, Witt C, Baker T V, et al. Dynamics of freely swimming flexible foils[J]. Physics of Fluids, 2012, 24(5):109-133.
[34] Marchese A D, Onal C D, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators[J]. Soft Robotics, 2014, 1(1):75-87.
[35] Katzschmann R K, Marchese A D, Rus D. Hydraulic autonomous soft robotic fish for 3D swimming[M]. Switzerland:Springer International Publishing, 2016:405-420.
[36] Suzumori K, Endo S, Kanda T, et al. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2007:4975-4980.
[37] Onal C D, Rus D. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot[J]. Bioinspiration & Biomimetics, 2013, 8(2):No.026003.
[38] Lagoudas D C, Tadjbakhsh I G. Active flexible rods with embedded SMA fibers[J]. Smart Materials and Structures, 1992, 1(2):162-167.
[39] 刘俊兵.差动式形状记忆合金驱动器驱动性能研究[J].现代机械,2017(1):4-7. Liu J B. Drive performance research of differential shape memory alloy actuator[J]. Modern Machinery, 2017(1):4-7.
[40] Shibata M, Saijyo F, Hirai S. Crawling by body deformation of tensegrity structure robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2009:4375-4380.
[41] Yili F U. Design of guiding robot for active catheter based on shape memory alloy[J]. Chinese Journal of Mechanical Engineering, 2008, 44(9):76-82.
[42] Seok S, Onal C D, Cho K J, et al. Meshworm:A peristaltic soft robot with antagonistic nickel titanium coil actuators[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(5):1485-1497.
[43] Laschi C, Cianchetti M, Mazzolai B, et al. Soft robot arm inspired by the octopus[J]. Advanced Robotics, 2012, 26(7):709-727.
[44] Laschi C, Mazzolai B, Mattoli V, et al. Design of a biomimetic robotic octopus arm[J]. Bioinspiration & Biomimetics, 2009, 4(1):No. 015006.
[45] Sugiyama Y, Hirai S. Crawling and jumping by a deformable robot[J]. International Journal of Robotics Research, 2006, 25(5/6):603-620.
[46] 李健,郭艳玲,王振龙,等.SMA丝驱动的仿生尾鳍推进器的实验研究[J].微特电机,2013,41(7):10-14. Li J, Guo Y L, Wang Z L, et al. Experimental research on bionic caudal fin actuated by SMA wires[J]. Small & Special Electrical Machines, 2013, 41(7):10-14.
[47] 李健,王荣臻,吴季,等.形状记忆合金丝驱动的仿生双尾鳍推进器的仿真和实验研究[J].微特电机,2016,44(8):22-25. Li J, Wang R Z, Wu J, et al. Simulation and experimental research on bionic double tail fin actuated by SMA wires[J]. Small & Special Electrical Machines, 2016, 44(8):22-25.
[48] Mao S, Dong E, Zhang S, et al. Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs[J]. Journal of Bionic Engineering, 2014, 11(3):400-411.
[49] Du Y, Xu M, Dong E, et al. A novel soft robot with three locomotion modes[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2011:98-103.
[50] 党智敏,王岚,王海燕.新型智能材料:电活性聚合物的研究状况[J].功能材料,2005,36(7):981-987. Dang Z M, Wang L, Wang H Y. Novel smart materials:Progress in electroactive polymers[J]. Journal of Functional Materials, 2005, 36(7):981-987.
[51] Pelrine R, Kornbluh R, Pei Q, et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science, 2000, 287(5454):836-839.
[52] Zhu F B, Zhang C L, Qian J, et al. Mechanics of dielectric elastomers:Materials, structures, and devices[J]. Journal of Zhejiang University, Science A:Applied Physics & Engineering, 2016, 17(1):1-21.
[53] 俞洛伊,刘茜,廖发,等.新型电智能材料——电致动聚合物[J].黑龙江纺织,2015(1):16-19. Yu L Y, Liu Q, Liao F, et al. New electric smart materials——Electroactive polymer[J]. Heilongjiang Textile, 2015(1):16-19.
[54] 张明,张亦旸,刘俊亮.机器人软体材料研究进展[J].科技导报,2017,35(18):29-38. Zhang M, Zhang Y Y, Liu J L. Soft materials for artificial robot[J]. Science and Technology Review, 2017, 35(18):29-38.
[55] 钟林成,王永泉,陈花玲.基于介电弹性软体材料的能量收集:现状、趋势与挑战[J].中国科学:技术科学,2016,46(10):987-1004. Zhong L C, Wang Y Q, Cheng H L. Energy harvesting based on soft material of dielectric elastomers:Status, trends and challenges[J]. Scientia Sinica Technologica, 2016, 46(10):987-1004.
[56] 李铁风,李国瑞,梁艺鸣,等.软体机器人结构机理与驱动材料研究综述[J].力学学报,2016,48(4):756-766. Li T F, Li G R, Liang Y M, et al. Review of materials and structures in soft robotics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):756-766.
[57] Lai W, Bastawros A F, Hong W, et al. Fabrication and analysis of planar dielectric elastomer actuators capable of complex 3-D deformation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:4968-4973.
[58] Nguyen C T, Phung H, Nguyen T D, et al. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators[J]. Smart Materials and Structures, 2014, 23(6):1-12.
[59] Jung K, Koo J C, Nam J D, et al. Artificial annelid robot driven by soft actuators[J]. Bioinspiration & Biomimetics, 2007, 2(2):42-49.
[60] Gu G Y, Zhu J, Zhu L M, et al. A survey on dielectric elastomer actuators for soft robots[J]. Bioinspiration & Biomimetics, 2017, 12(1):No.011003.
[61] Shahinpoor M, Kim K J. Ionic polymer metal composites:IV. Industrial and medical applications[J]. Smart Materials and Structures, 2004, 14(1):197-214.
[62] 苏玉东,叶秀芬,郭书祥.基于~IPMC驱动的自主微型机器鱼[J].机器人,2010,32(2):262-270. Su Y D, Ye X F, Guo S X. An autonomous micro robot fish based on IPMC actuator[J]. Robot, 2010, 32(2):262-270.
[63] Najem J, Sarles S A, Akle B, et al. Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators[J]. Smart Materials and Structures, 2012, 21(9):299-312.
[64] Firouzeh A, Ozmaeian M, Alasty A, et al. An IPMC-made deformable-ring-like robot[J]. Smart Materials and Structures, 2012, 21(6):65011-65021.
[65] Brochu P, Pei Q. Advances in dielectric elastomers for actuators and artificial muscles[J]. Macromolecular Rapid Communications, 2010, 31(1):10-36.
[66] 汪建晓,孟光.磁流变弹性体研究进展[J].功能材料,2006,37(5):706-709. Wang J X, Meng G. Research advances in magnetorheological elastomers[J]. Journal of Functional Materials, 2006, 37(5):706-709.
[67] Kashima S, Miyasaka F, Hirata K. Novel soft actuator using magnetorheological elastomer[J]. IEEE Transactions on Magnetics, 2012, 48(4):1649-1652.
[68] Bartlett N W, Tolley M T, Overvelde J T, et al. A 3D-printed, functionally graded soft robot powered by combustion[J]. Science, 2015, 349(6244):161-165.
[69] Onal C D, Chen X, Whitesides G M, et al. Soft mobile robots with on-board chemical pressure generation[C]//15th International Symposium of Robotics Research. Berlin, Germany:Springer, 2017:525-540.
[70] Rogó M, Zeng H, Xuan C, et al. Light-driven soft robot mimics caterpillar locomotion in natural scale[J]. Advanced Optical Materials, 2016, 4(11):1689-1694.
[71] Tsugami Y, Nishida T. Simple structured gripper using electromagnet and permanent magnet[C]//International Conference on ICT Robotics. Fukuoka, Japan:Kyushu Institute of Technology, 2017:64-67.
[72] Schmauch M M, Mishra S R, Evans B A, et al. Chained iron microparticles for directionally controlled actuation of soft robots[J]. ACS Applied Materials & Interfaces, 2017, 9(13):11895-11901.
[73] Yang D, Mosadegh B, Ainla A, et al. Buckling of elastomeric beams enables actuation of soft machines[J]. Advanced Materials, 2015, 27(41):6323-6327.
[74] Yang D, Verma M S, So J, et al. Linear actuators:Buckling pneumatic linear actuators inspired by muscle[J]. Advanced Materials Technologies, 2016, 1(3):1-6.
[75] Rossiter J, Winfield J, Ieropoulos I. Eating, drinking, living, dying and decaying soft robots[C]//Soft Robotics:Trends, Applications and Challenges. Berlin, Germany:Springer, 2016:25-30.
[76] Li H, Go G, Ko S Y, et al. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery[J]. Smart Materials and Structures, 2016, 25(2):No. 027001.
[77] Gu X G, Fan Q X, Yang F, et al. Hydro-actuation of hybrid carbon nanotube yarn muscles[J]. Nanoscale, 2016, 8(41):17881-17886.
[78] Trivedi D, Rahn C D, Kier W M, et al. Soft robotics:Biological inspiration, state of the art, and future research[J]. Applied Bionics & Biomechanics, 2008, 5(3):99-117.
[79] Wang H Y, Liu Z F, Ding J N, et al. Conducting fibers:Downsized sheath-core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors[J]. Advanced Materials, 2016, 28(25):4998-5007.