Citation: | MA Hua yi, ZHANG Ai qun, ZHANG Zhu ying. A INVERSE SOLUTION FOR MANIPULATOR KINEMATICS BASED ON OPTIMAL ALGORITHM[J]. ROBOT, 2001, 23(2): 137-141. |
[1] |
Li-Chun Tommy Wang. A Combined Optimization Method for Solving The Inverse Kinematics Problem of Mechanical Manipulators. IEEE Trans of Robotics and Automation, 1991,7(4):489-499
|
[2] |
XinHua Zhao. A Successive Approximation Algorithm for The Inverse Position Analysis of Serial Manipulator. Robotica, 1999,17:487-489
|
[3] |
Dinesh Manoca. Efficient Inverse Kinematics for General Manipulators. IEEE Trans of Robotics and Automation, 1994,10(5)
|
[4] |
James Nielsen. On the Kinematics Analysis of Robotic Mecha-nisms. The International Journal of Robotics Research, 1999,18(12):1147-1160
|
[5] |
袁亚湘,孙文瑜. 最优化理论与方法. 科学出版社,1997
|
[6] |
Burke J, Moré J J. Convergence Property Of Trust Region Methods for Linear and Convex Constrains. Math, prog., 1990,32:305-336
|
[7] |
Conn A R, Gould N I M. Global Convergence of a Class of Trust Region Algorithms for Optimization With Simple Bounds, SIAM J.Numer. Anal, 1988,25:433-460
|
[8] |
蒋新松. 机器人导论. 辽宁科学技术出版社. 1994
|
[9] |
Angeles J. On The Numerical Solution for The Inverse Kine-matics Problem. International Jorunal of Robotics Research, 1985,4(2):21-37
|
[10] |
刘永超. 遗传算法解机械手运动学逆解. 机器人, 1998,20(6):421-426
|
[11] |
Kazeronian. K. On The Numerical Inverse Kinematics of Robotics Manipulator. ASME j Mechanisms Transmissions Automation Design, 1987,109:120-126
|
[12] |
Cox D, Little J, O'Shea D. Ideals, Varieties, and Algorithm(second edition). New York Verlag
|
[13] |
Wamper C, Morgan A, Sommese A. Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics. ASME J. Mech. Design. 1990,112:59-68
|
[14] |
Gill P E, Murray W. Quasi Newton Methods for Unconstrained Optimization. J. Inst. Math. Applns, 1972,9:91-108
|