Volume 9 Issue 4
Jul.  1987
Turn off MathJax
Article Contents
WANG Qingren. An Asymptotically Optimal Tree Classifier Training Algorithm[J]. ROBOT, 1987, 9(4): 34-37.
Citation: WANG Qingren. An Asymptotically Optimal Tree Classifier Training Algorithm[J]. ROBOT, 1987, 9(4): 34-37.

An Asymptotically Optimal Tree Classifier Training Algorithm

More Information
  • Received Date: December 01, 1986
  • Published Date: July 14, 1987
  • Conventional non-parametric tree classifier design is characterized by partition-edit,where each subregion is assigned to a class according to voting by the patterns in thisregion.This scheme usually does not result in high recognition rate.An edit-partitionscheme is given in this paper,which achieves asymptotically Bayesian optimal recogni-tion rate.Simulation experiments have been conducted,which show that tree classif-iers in this scheme achieve high recognition rate even when the pattern distribution iscomplex and the training sample size is small.Furthermore the time efficiency of edit-partition tree classifiers is 100 to 1000 times higher than that of the other non-param-etric classifier,e.g.the nearest neighbor rules.

Catalog

    Article views (27) PDF downloads (196) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return