Citation: | ZHAO Zhengtao, ZHAO Wentao, SUN Zhaoyang, WANG Jin, WAN Bing. A VFOSELM-SRP-based Method for Path Prediction of Autonomous Sailboats[J]. ROBOT, 2025, 47(2): 249-258. DOI: 10.13973/j.cnki.robot.240071 |
[1] |
俞建成, 孙朝阳, 张艾群. 无人帆船研究现状与展望[J]. 机械工程学报, 2018, 54(24): 98-110. doi: 10.3901/JME.2018.24.098
YU J C, SUN Z Y, ZHANG A Q. Research status and prospect of autonomous sailboats[J]. Journal of Mechanical Engineering, 2018, 54(24): 98-110. doi: 10.3901/JME.2018.24.098
|
[2] |
RIEPPI A, RIEPPI F, MARZOA M, et al. Autonomous sailboat control based on reinforcement learning for navigation in variable conditions[C]//XLIX Latin American Computer Conference. Piscataway, USA: IEEE, 2023. doi: 10.1109/CLEI60451.2023.10346120
|
[3] |
HUANG Y J, DU J T, YANG Z R, et al. A survey on trajectory-prediction methods for autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(3): 652-674. doi: 10.1109/TIV.2022.3167103
|
[4] |
LIU C, LI T, WU W, et al. Event-triggered predictive path following control of autonomous ships with an MMG model[J]. Ocean Engineering, 2024, 314. doi: 10.1016/j.oceaneng.2024.119582.doi:10.1016/j.oceaneng.2024.119582
|
[5] |
BHARILYA V, KUMAR N. Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey, challenges, and future research directions[J]. Vehicular Communications, 2024, 46. doi: 10.1016/j.vehcom.2024.100733.doi:10.1016/j.vehcom.2024.100733
|
[6] |
CAPOBIANCO S, MILLEFIORI L M, FORTI N, et al. Deep learning methods for vessel trajectory prediction based on recurrent neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4329-4346. doi: 10.1109/TAES.2021.3096873
|
[7] |
ZHANG M Y, TAIMURI G, ZHANG J F, et al. A deep learning method for the prediction of 6-DoF ship motions in real conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2023, 237(4): 887-905. doi: 10.1177/14750902231157852
|
[8] |
ZHANG M, KUJALA P, MUSHARRAF M, et al. A machine learning method for the prediction of ship motion trajectories in real operational conditions[J]. Ocean Engineering, 2023, 283. doi: 10.1016/j.oceaneng.2023.114905.doi:10.1016/j.oceaneng.2023.114905
|
[9] |
PEI L S, WU H B. Does online learning work better than offline learning in undergraduate medical education? A systematic review and meta-analysis[J]. Medical Education Online, 2019, 24(1). doi: 10.1080/10872981.2019.1666538.doi:10.1080/10872981.2019.1666538
|
[10] |
HOI S C H, SAHOO D, LU J, et al. Online learning: A comprehensive survey[J]. Neurocomputing, 2021, 459: 249-289. doi: 10.1016/j.neucom.2021.04.112
|
[11] |
ANDERSON T. The theory and practice of online learning[M]. 2nd ed. Athabasca, Canada: Athabasca University Press, 2008. https://www.aupress.ca/app/uploads/120146_99Z_Anderson_2008-Theory_and_Practice_of_Online_Learning.pdf
|
[12] |
LIMA A R, CANNON A J, HSIEH W W. Forecasting daily streamflow using online sequential extreme learning machines[J]. Journal of Hydrology, 2016, 537: 431-443. doi: 10.1016/j.jhydrol.2016.03.017
|
[13] |
OZA N C, RUSSELL S J. Online bagging and boosting[C]//Proceedings of the 8th International Workshop on Artificial Intelligence and Statistics. Cambridge, USA: MIT Press, 2001: 229-236. https://proceedings.mlr.press/r3/oza01a.html
|
[14] |
DEWHIRST O P, EVANS H K, ROSKILLY K, et al. Improving the accuracy of estimates of animal path and travel distance using GPS drift-corrected dead reckoning[J]. Ecology and Evolution, 2016, 6(17): 6210-6222. doi: 10.1002/ece3.2359
|
[15] |
SOLOMATINE D, SEE L M, ABRAHART R J. Data-driven modelling: Concepts, approaches and experiences[M]//Water Science and Technology Library, Vol.68. Berlin, Germany: Springer, 2008: 17-30. doi: 10.1007/978-3-540-79881-1_2
|
[16] |
范尚雍. 船舶操纵性[M]. 北京: 国防工业出版社, 1988. http://find.nlc.cn/search/showDocDetails?docId=4600212788500359653&dataSource=ucs01&query=
FAN S Y. Ship maneuverability[M]. Beijing: National Defense Industry Press, 1988. http://find.nlc.cn/search/showDocDetails?docId=4600212788500359653&dataSource=ucs01&query=
|
[17] |
HASHEMI A, RAHIMPOUR M, MERATI M R. Dynamic Gaussian filter for muscle noise reduction in ECG signal[C]//23rd Iranian Conference on Electrical Engineering. Piscataway, USA: IEEE, 2015: 120-124. doi: 10.1109/IranianCEE.2015.7146194
|
[18] |
YE Y B, SQUARTINI S, PIAZZA F. Online sequential extreme learning machine in nonstationary environments[J]. Neurocomputing, 2013, 116: 94-101. doi: 10.1016/j.neucom.2011.12.064
|
[19] |
GOMES H M, READ J, BIFET A. Streaming random patches for evolving data stream classification[C]//IEEE International Conference on Data Mining. Piscataway, USA: IEEE, 2019: 240-249. doi: 10.1109/ICDM.2019.00034
|
[20] |
BERNARDO A, DELLA VALLE E, BIFET A. Choosing the right time to learn evolving data streams[C]//IEEE International Conference on Big Data. Piscataway, USA: IEEE, 2023: 5156-5165. doi: 10.1109/BigData59044.2023.10386551
|
[21] |
PANICKER N K K, VALARMATHI J. A GWO optimized SVR for time series prediction of black carbon across a tropical coastal station in India[C]//3rd International Conference on Artificial Intelligence for Internet of Things. Piscataway, USA: IEEE, 2024. doi: 10.1109/AⅡoT58432.2024.10574633
|
[22] |
LIU Y, HU T G, ZHANG H R, et al. iTransformer: Inverted transformers are effective for time series forecasting[DB/OL]. (2024-03-14)[2024-05-14]. https://arxiv.org/abs/2310.06625
|