Citation: | GUO Shijie, SONG Yuanhao, WANG Xusheng, LIU Zuojun, LI Yang. Learning and Transfer Methods for Active Rehabilitation Strategy of Upper-limb Rehabilitation Robot[J]. ROBOT, 2024, 46(5): 562-575. DOI: 10.13973/j.cnki.robot.240014 |
[1] |
HILL M, JÖRGENSEN S, ENGSTRÖM G, et al. Functional and structural impairments of the pulmonary system in middleaged people with cervical and upper thoracic spinal cord injuries[J]. The Journal of Spinal Cord Medicine, 2023, 46(5): 732-741. doi: 10.1080/10790268.2022.2031478
|
[2] |
王陇德, 彭斌, 张鸿祺, 等. 《中国脑卒中防治报告2020》概要[J]. 中国脑血管病杂志, 2022, 19(2): 136-144. doi: 10.3969/j.issn.1672-5921.2022.02.011
WANG L D, PENG B, ZHANG H Q, et al. Brief report on stroke prevention and treatment in China, 2020[J]. Chinese Journal of Cerebrovascular Disease, 2022, 19(2): 136-144. doi: 10.3969/j.issn.1672-5921.2022.02.011
|
[3] |
何畅, 熊蔡华, 陈文斌. 脑损伤上肢康复机器人及其临床应用研究[J]. 机械工程学报, 2023, 59(19): 65-80. doi: 10.3901/JME.2023.19.065
HE C, XIONG C H, CHEN W B. Review on upper-limb rehabilitation robots for patients with brain injury and clinical applications[J]. Journal of Mechanical Engineering, 2023, 59(19): 65-80. doi: 10.3901/JME.2023.19.065
|
[4] |
罗胜利, 孟巧玲, 喻洪流. 我国康复机器人技术研究与应用概况[J]. 中国康复医学杂志, 2023, 38(12): 1762-1768. doi: 10.3969/j.issn.1001-1242.2023.12.023
LUO S L, MENG Q L, YU H L. Survey on research and application of rehabilitation robot technology in our country[J]. Chinese Journal of Rehabilitation Medicine, 2023, 38(12): 1762-1768. doi: 10.3969/j.issn.1001-1242.2023.12.023
|
[5] |
PEREZ-IBARRA J C, SIQUEIRA A A G, SILVA-COUTO M A, et al. Adaptive impedance control applied to robot-aided neuro-rehabilitation of the ankle[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 185-192. doi: 10.1109/LRA.2018.2885165
|
[6] |
梁文渊, 毕胜. 主动康复训练机器人的感知交互与控制策略[J]. 科技导报, 2019, 37(22): 26-36. https://kns.cnki.net/kcms2/article/abstract?v=8WLnD7pOpNFKoroIUYhZckqqzGWu-te37P_7MbxSviNSmygxaK1uaI9PlyHqGOi5p0ToqqnAPEk4qkzK8OSIyE4JQ238FQ3BUPyAOPLVah4NG4c90kHUwVf6dWZwYEHsido1C7b1Hvg=&uniplatform=NZKPT&flag=copy
LIANG W Y, BI S. Sensory interaction and control strategy in rehabilitation robot with active training[J]. Science and Technology Review, 2019, 37(22): 26-36. https://kns.cnki.net/kcms2/article/abstract?v=8WLnD7pOpNFKoroIUYhZckqqzGWu-te37P_7MbxSviNSmygxaK1uaI9PlyHqGOi5p0ToqqnAPEk4qkzK8OSIyE4JQ238FQ3BUPyAOPLVah4NG4c90kHUwVf6dWZwYEHsido1C7b1Hvg=&uniplatform=NZKPT&flag=copy
|
[7] |
ZHANG J J, CHEAH C C. Passivity and stability of humanrobot interaction control for upper-limb rehabilitation robots[J]. IEEE Transactions on Robotics, 2015, 31(2): 233-245. doi: 10.1109/TRO.2015.2392451
|
[8] |
PEHLIVAN A U, LOSEY D P, O'MALLEY M K. Minimal assist-as-needed controller for upper limb robotic rehabilitation[J]. IEEE Transactions on Robotics, 2016, 32(1): 113-124. doi: 10.1109/TRO.2015.2503726
|
[9] |
李洋, 朱立爽, 刘今越, 等. 基于动力学模型辨识的全臂柔顺控制[J]. 机械工程学报, 2022, 58(3): 45-54. doi: 10.3901/JME.2022.03.045
LI Y, ZHU L S, LIU J Y, et al. Dynamic model identification for whole-arm compliance control[J]. Journal of Mechanical Engineering, 2022, 58(3): 45-54. doi: 10.3901/JME.2022.03.045
|
[10] |
李洋, 冯适意, 朱德良, 等. 面向移乘护理的冗余双臂机器人行为安全控制[J]. 机械工程学报, 2023, 59(9): 76-89. doi: 10.3901/JME.2023.09.076
LI Y, FENG S Y, ZHU D L, et al. Safety control of a redundant dual-arm robot for transfer-care task[J]. Journal of Mechanical Engineering, 2023, 59(9): 76-89. doi: 10.3901/JME.2023.09.076
|
[11] |
LIU P, GE X Q, LI Y, et al. Study on control strategy of active rehabilitation training for upper limb rehabilitation robots[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(4): 570-576. doi: 10.7523/j.issn.2095-6134.2019.04.018
|
[12] |
吴青聪, 王兴松, 吴洪涛, 等. 上肢康复外骨骼机器人的模糊滑模导纳控制[J]. 机器人, 2018, 40(4): 457-465. doi: 10.13973/j.cnki.robot.18093
WU Q C, WANG X S, WU H T, et al. Fuzzy sliding mode admittance control of the upper limb rehabilitation exoskeleton robot[J]. Robot, 2018, 40(4): 457-465. doi: 10.13973/j.cnki.robot.18093
|
[13] |
程龙, 夏修泽. 上肢康复外骨骼智能控制综述[J]. 机器人, 2022, 44(6): 750-768. doi: 10.13973/j.cnki.robot.210450
CHENG L, XIA X Z. A survey of intelligent control of upper limb rehabilitation exoskeleton[J]. Robot, 2022, 44(06): 750-768. doi: 10.13973/j.cnki.robot.210450
|
[14] |
梁旭, 王卫群, 苏婷婷, 等. 下肢康复机器人的主动柔顺自适应交互控制[J]. 机器人, 2021, 43(5): 547-556. doi: 10.13973/j.cnki.robot.210029
LIANG X, WANG W Q, SU T T, et al. Active compliant and adaptive interaction control for a lower limb rehabilitation robot[J]. Robot, 2021, 43(5): 547-556. doi: 10.13973/j.cnki.robot.210029
|
[15] |
LEI X Y, ZHANG Z A, DONG P F. Dynamic path planning of unknown environment based on deep reinforcement learning[J]. Journal of Robotics, 2018. doi: 10.1155/2018/5781591
|
[16] |
KAHN G, VILLAFLOR A, DING B, et al. Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2018: 5129-5136. doi: 10.1109/ICRA.2018.8460655
|
[17] |
TAI L, PAOLO G, LIU M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2017: 31-36. doi: 10.1109/IROS.2017.8202134
|
[18] |
LAKE B M, ULLMAN T D, TENENBAUM J B, et al. Building machines that learn and think like people[J]. Behavioral and Brain Sciences, 2017, 40. doi: 10.1017/S0140525X16001837
|
[19] |
Wu Y H, Yu Z C, Li C Y, et al. Reinforcement learning in dual-arm trajectory planning for a free-floating space robot[J]. Aerospace Science and Technology, 2020, 98. doi: 10.1016/j.ast.2019.105657
|
[20] |
CHEN X, GHADIRZADEH A, FOLKESSON J, et al. Deep reinforcement learning to acquire navigation skills for wheellegged robots in complex environments[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2018: 3110-3116. doi: 10.1109/IROS.2018.8593702
|
[21] |
MENG F C, DAI Y P. Reinforcement learning adaptive control for upper limb rehabilitation robot based on fuzzy neural network[C]//31st Chinese Control Conference. Piscataway, USA: IEEE, 2012: 5157-5161. https://ieeexplore.ieee.org/abstract/document/6390836
|
[22] |
ZHANG Y, LI S, NOLAN K J, et al. Adaptive assist-asneeded control based on actor-critic reinforcement learning[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2019: 4066-4071. doi: 10.1109/IROS40897.2019.8968464
|
[23] |
BOEING A, BRÄUNL T. Leveraging multiple simulators for crossing the reality gap[C]//International Conference on Control, Automation, Robotics and Vision. Piscataway, USA: IEEE, 2012: 1113-1119. doi: 10.1109/ICARCV.2012.6485313
|
[24] |
WANG T, BAO X, CLAVERA I, et al. Benchmarking modelbased reinforcement learning[DB/OL]. (2019-07-03)[2023-12-11]. https://arxiv.org/abs/1907.02057.
|
[25] |
GAO C, JIANG Y, CHEN F. Transferring hierarchical structures with dual meta imitation learning[C]//Proceedings of the 6th Conference on Robot Learning. New York, USA: ACM, 2023: 762-773. https://proceedings.mlr.press/v205/gao23b.html
|
[26] |
MEHTA B, DIAZ M, GOLEMO F, et al. Active domain randomization[C]//Proceedings of the Conference on Robot Learning. New York, USA: ACM, 2020: 1162-1176. https://proceedings.mlr.press/v100/mehta20a.html
|
[27] |
CHEN J, WU X X, DUAN L X, et al. Domain adversarial reinforcement learning for partial domain adaptation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 539-553. doi: 10.1109/TNNLS.2020.3028078
|
[28] |
SLAOUI R B, CLEMENTS W R, FOERSTER J N, et al. Robust domain randomization for reinforcement learning[DB/OL]. (2020-03-06)[2023-12-11]. https://arxiv.org/abs/1910.10537.
|
[29] |
PENG X B, COUMANS E, ZHANG T, et al. Learning agile robotic locomotion skills by imitating animals[DB/OL]. (2020-07-21)[2023-12-11]. https://arxiv.org/abs/2004.00784.
|
[30] |
严浩, 王洪波, 陈鹏, 等. 具有广义肩关节的上肢康复机器人优化设计[J]. 兵工学报, 2021, 42(11): 2491-2502. doi: 10.3969/j.issn.1000-1093.2021.11.022
YAN H, WANG H B, CHEN P, et al. Optimal design of an upper limb rehabilitation robot with generalized shoulder joint[J]. Acta Armamentarii, 2021, 42(11): 2491-2502. doi: 10.3969/j.issn.1000-1093.2021.11.022
|
[31] |
HE D X, WANG H P, TIAN Y. Fractional-order ultra-local model-based optimal model-free control for 7-DOF iReHave upper-limb exoskeleton[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2022, 69(8): 3510-3514. doi: 10.1109/TCSII.2022.3161659
|
[32] |
HUANG R, CHENG H, CHEN Q M, et al. Interactive learning for sensitivity factors of a human-powered augmentation lower exoskeleton[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2015: 6409-6415. doi: 10.1109/IROS.2015.7354293
|
[33] |
CHIA E Y, CHEN Y L, CHIEN T C, et al. Velocity field based active-assistive control for upper limb rehabilitation exoskeleton robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2020: 1742-1748. doi: 10.1109/ICRA40945.2020.9196766
|
[34] |
ASL H J, YAMASHITA M, NARIKIYO T, et al. Field-based assist-as-needed control schemes for rehabilitation robots[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(4): 2100-2111. doi: 10.1109/TMECH.2020.2992090
|
[35] |
陈文斌. 人体上肢运动学分析与类人肢体设计及运动规划[D]. 武汉: 华中科技大学, 2012. doi: 10.7666/d.D232844
CHEN W B. Human upper limb kinematics and anthropomorphic robot kinematic design and motion planning[D]. Wuhan: Huazhong University of Science and Technology, 2012. doi: 10.7666/d.D232844
|