MO Liyan, ZHANG Daohui, FU Xin, ZHAO Xingang. An Underwater Proprioceptive Soft Actuator Based on the Flexible Optical Waveguide[J]. ROBOT, 2024, 46(2): 129-138. DOI: 10.13973/j.cnki.robot.230027
Citation: MO Liyan, ZHANG Daohui, FU Xin, ZHAO Xingang. An Underwater Proprioceptive Soft Actuator Based on the Flexible Optical Waveguide[J]. ROBOT, 2024, 46(2): 129-138. DOI: 10.13973/j.cnki.robot.230027

An Underwater Proprioceptive Soft Actuator Based on the Flexible Optical Waveguide

More Information
  • Received Date: February 06, 2023
  • Revised Date: May 28, 2023
  • Accepted Date: April 06, 2023
  • Available Online: March 26, 2024
  • Underwater soft actuators play an important role in underwater biological sampling, cultural relics salvage and other operational tasks, but their proprioceptive ability is insufficient. One reason is that traditional underwater sensing modules are unsuitable for soft actuators, and are susceptible to ambient temperature, with poor anti-interference ability, large volume, and large hardness. In order to solve this problem, a proprioceptive function of a bellow-structured soft actuator is developed based on a flexible optical waveguide sensor, which is insensitive to temperature and electromagnetic interference and is of a fast response speed and high linearity. Firstly, the soft actuator's ability to detect basic physical properties of objects (surface texture and hardness) is tested in the laboratory shallow water environment. Secondly, the application feasibility of the soft actuator in typical operation scenarios of 3000 m underwater is preliminarily verified in a laboratory simulated static water high-pressure environment (0~30 MPa). The experimental results show that: the soft actuator can sense the sawtoothcorrugated surface with an amplitude of 1 mm at a driving pressure of 40 kPa in the shallow water environment; when the driving pressure is greater than 30 kPa, the soft actuator can clearly distinguish the bending state of the body and three objects with different hardness; under the hydrostatic pressure 0~30 MPa, the flexible optical waveguide sensor can well characterize the soft actuator's different bending states; when the water pressure rises, the hysteresis of the sensor increases, and the sensitivity decreases. The above experimental results show that the proprioceptive soft actuator based on the flexible optical waveguide has the function of underwater in-situ perception, and still has good perception performance in the equivalent underwater 3000 m operating range.
  • [1]
    DONG X G, TANG C, JIANG S W, et al. Increasing the payload and terrain adaptivity of an untethered crawling robot via soft-rigid coupled linear actuators[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2405-2412. doi: 10.1109/LRA.2021.3061342
    [2]
    HAWKES E W, BLUMENSCHEIN L H, GREER J D, et al. A soft robot that navigates its environment through growth[J]. Science Robotics, 2017, 2(8). doi: 10.1126/scirobotics.aan3028
    [3]
    JIANG H, WANG Z C, JIN Y S, et al. Hierarchical control of soft manipulators towards unstructured interactions[J]. International Journal of Robotics Research, 2021, 40(1): 411-434. doi: 10.1177/0278364920979367
    [4]
    CAO J W, LIANG W Y, WANG Y Z, et al. Control of a soft inchworm robot with environment adaptation[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 3809-3818. doi: 10.1109/TIE.2019.2914619
    [5]
    CHENG T Y, LI G R, LIANG Y M, et al. Untethered soft robotic jellyfish[J]. Smart Materials and Structures, 2018, 28(1). doi: 10.1088/1361-665X/aaed4f
    [6]
    KITAMORI T, WADA A, NABAE H, et al. Untethered three-arm pneumatic robot using hose-free pneumatic actuator[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2016: 543-548. doi: 10.1109/IROS.2016.7759106
    [7]
    PASCHAL T, BELL M A, SPERRY J, et al. Design, fabrication, and characterization of an untethered amphibious sea urchin-inspired robot[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3348-3354. doi: 10.1109/LRA.2019.2926683
    [8]
    BELL M A, WEAVER J C, WOOD R J. An ambidextrous starfish-inspired exploration and reconnaissance robot (The ASTER-bot)[J]. Soft Robotics, 2022, 9(5): 991-1000. doi: 10.1089/soro.2021.0053
    [9]
    LI G R, CHEN X P, ZHOU F H, et al. Self-powered soft robot in the Mariana Trench[J]. Nature, 2021, 591: 66-71. doi: 10.1038/s41586-020-03153-z
    [10]
    LIU J Q, IACOPONI S, LASCHI C, et al. Underwater mobile manipulation: A soft arm on a benthic legged robot[J]. IEEE Robotics & Automation Magazine, 2020, 27(4): 12-26. doi: 10.1109/MRA.2020.3024001
    [11]
    GONG Z Y, FANG X, CHEN X Y, et al. A soft manipulator for efficient delicate grasping in shallow water: Modeling, control, and real-word experiments[J]. International Journal of Robotics Research, 2021, 40(1): 449-469. doi: 10.1177/0278364920917203
    [12]
    GALLOWAY K C, BECKER K P, PHILLIPS B, et al. Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3(1): 23-33. doi: 10.1089/soro.2015.0019
    [13]
    VOGT D M, BECKER K P, PHILLIPS B T, et al. Shipboard design and fabrication of custom 3D-printed soft robotic manipulators for the investigation of delicate deep-sea organisms[J]. PLoS ONE, 2018, 13(8). doi: 10.1371/journal.pone.0200386
    [14]
    韩非, 张道辉, 赵新刚, 等. 面向水下抓取作业的复合腔体仿生软体手设计[J]. 机器人, 2023, 45(2): 207-217. doi: 10.13973/j.cnki.robot.210473

    HAN F, ZHANG D H, ZHAO X G, et al. Design of a bionic soft hand with compound cavity for underwater grasping[J]. Robot, 2023, 45(2): 207-217. doi: 10.13973/j.cnki.robot.210473
    [15]
    LANE D M, DAVIES J B C, ROBINSON G, et al. The AMADEUS dextrous subsea hand: Design, modeling, and sensor processing[J]. IEEE Journal of Oceanic Engineering, 1999, 24(1): 96-111. doi: 10.1109/48.740158
    [16]
    MENG Q X, WANG H, LI P, et al. Dexterous underwater robot hand: HEU Hand Ⅱ[C]//International Conference on Mechatronics and Automation. Piscataway, USA: IEEE, 2006: 1477-1482. doi: 10.1109/ICMA.2006.257847
    [17]
    BEMFICA J R, MELCHIORRI C, MORIELLO L, et al. Mechatronic design of a three-fingered gripper for underwater applications[J]. IFAC Proceedings Volumes, 2013, 46(5): 307-312. doi: 10.3182/20130410-3-CN-2034.00080
    [18]
    RIBAS D, RIDAO P, TURETTA A, et al. I-AUV mechatronics integration for the TRIDENT FP7 project[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(5): 2583-2592. doi: 10.1109/TMECH.2015.2395413
    [19]
    KAMPMANN P, KIRCHNER F. Towards a fine-manipulation system with tactile feedback for deep-sea environments[J]. Robotics and Autonomous Systems, 2015, 67: 115-121. doi: 10.1016/j.robot.2014.09.033
    [20]
    刘辰辰. 水下力感知多指手设计及研究[D]. 沈阳: 中国科学院沈阳自动化研究所, 2018.

    LIU C C. Design and research of underwater multi-fingered hand with force sense[D]. Shenyang: Shenyang Institute of Automation, Chinese Academy of Sciences, 2018.
    [21]
    XIE Z X, YUAN F Y, LIU Z M, et al. A proprioceptive soft tentacle gripper based on crosswise stretchable sensors[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(4): 1841-1850. doi: 10.1109/TMECH.2020.2993258
    [22]
    HAO Y F, LIU Z M, LIU J Q, et al. A soft gripper with programmable effective length, tactile and curvature sensory feedback[J]. Smart Materials and Structures, 2020, 29(3). doi: 10.1088/1361-665X/ab6759
    [23]
    THURUTHEL T G, SHIH B, LASCHI C, et al. Soft robot perception using embedded soft sensors and recurrent neural networks[J]. Science Robotics, 2019, 4(26). doi: 10.1126/scirobotics.aav1488
    [24]
    ROCHA R P, LOPES P A, DE ALMEIDA A T, et al. Fabrication and characterization of bending and pressure sensors for a soft prosthetic hand[J]. Journal of Micromechanics and Microengineering, 2018, 28(3). doi: 10.1088/1361-6439/aaa1d8
    [25]
    ZHAO H C, O'BRIEN K, LI S, et al. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides[J]. Science Robotics, 2016, 1(1). doi: 10.1126/scirobotics.aai7529
    [26]
    JUNG J, PARK M, KIM D, et al. Optically sensorized elastomer air chamber for proprioceptive sensing of soft pneumatic actuator[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 2333-2340. doi: 10.1109/LRA.2020.2970984
    [27]
    TEEPLE C B, BECKER K P, WOOD R J. Soft curvature and contact force sensors for deep-sea grasping via soft optical waveguides[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2018: 1621-1627. doi: 10.1109/IROS.2018.8594270
    [28]
    SUN E L, WANG T, ZHU S Q. An experimental study of bellows-type fluidic soft bending actuators under external water pressure[J]. Smart Materials and Structures, 2020, 29(8). doi: 10.1088/1361-665X/ab9518
  • Related Articles

    [1]LIU Wenbo, WANG Yun, DUO Youning, DUAN Jinxi, CHEN Xingyu, LI Lei, LIU Yuchen, WEN Li. Recent Progress of Soft Robot Interaction Based on Flexible Sensing[J]. ROBOT, 2024, 46(2): 195-218. DOI: 10.13973/j.cnki.robot.230313
    [2]YU Junzhi, KONG Shihan, MENG Yan. Methods and Technologies for Visual Perception of Underwater Environment[J]. ROBOT, 2022, 44(2): 224-235. DOI: 10.13973/j.cnki.robot.210323
    [3]XU Guozheng, SONG Aiguo, GAO Xiang, CHEN Sheng, XU Baoguo. Control Method for Robot-aided Active RehabilitationTraining Tasks Based on Emotion Perception[J]. ROBOT, 2018, 40(4): 466-473. DOI: 10.13973/j.cnki.robot.170546
    [4]ZHANG Weidong, ZHANG Wei, LI Zhenpeng, GU Jianjun. Visual Features for Long-Range Terrain Perception[J]. ROBOT, 2015, 37(3): 369-375. DOI: 10.13973/j.cnki.robot.2015.0369
    [5]ZHU Tehao, ZHAO Qunfei, XIA Zeyang. A Visual Perception Algorithm for Human Motion by a Kinect[J]. ROBOT, 2014, 36(6): 647-653. DOI: 10.13973/j.cnki.robot.2014.0647
    [6]ZHANG Yu, SUN Kui, ZHANG Yuanfei, LIU Hong, ZHU Wanbin. Design of a Laser Range Finder for End Perception of Robot Arm[J]. ROBOT, 2014, 36(5): 519-526,534. DOI: 10.13973/j.cnki.robot.2014.0519
    [7]WANG Shi-hua, XU Bu-gong, LIU Yun-hui, JIA Yun-yi. Multi-information Perception Aided Teleoperated Robot System over Internet[J]. ROBOT, 2008, 30(1): 47-55,62.
    [8]GAO Zhen-dong, SU Jian-bo. Application of Robot Autonomous Perception Model to Internet-based Robot[J]. ROBOT, 2006, 28(2): 144-148.
    [9]WANG Xiao-long, GE Yun-jian, ZHANG Jian-jun, SONG Guang-ming. AN INTELLIGENT PERCEPTIVE SYSTEM FOR UNDERWATER ROBOT BASED ON DISTRIBUTED INFORMATION FUSION[J]. ROBOT, 2002, 24(5): 432-435.
    [10]CHEN Zong hai, ZHAN Chang hui. REVIEW AND PROSPECT OF INTELLIGENT ANALOGUE BY PERCEPTION-BEHAVIOR MODE[J]. ROBOT, 2001, 23(2): 187-192.

Catalog

    Article views (312) PDF downloads (160) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return