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Abstract: A two-stage state recognition method is proposed for asynchronous SSVEP (steady-state visual evoked poten-
tial) based brain-computer interface (SBCI) system. The two-stage method is composed of the idle state (IS) detection and
control state (CS) discrimination modules. Based on blind source separation and continuous wavelet transform techniques,
the proposed method integrates functions of multi-electrode spatial filtering and feature extraction. In IS detection module,
a method using the ensemble IS feature is proposed. In CS discrimination module, the ensemble CS feature is designed as
feature vector for control intent classification. Further, performance comparisons are investigated among our IS detection
module and other existing ones. Also the experimental results validate the satisfactory performance of our CS discrimination
module.
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1 Introduction

Brain-computer interface (BCI), developed in re-
cent years, is a new kind of human-machine interac-
tion way. It does not need human beings’ peripheral
nerve pathway and muscle, making use of brain elec-
tronic signals to reshape communication ways with out-
side world[1]. BCI research is an intelligent informa-
tion processing technique integrating multi-discipline
knowledge such as neural science, signal processing,
machine learning, and intelligent control, etc. Non-
invasive scalp electroencephalogram (EEG) is predomi-
nantly adopted in BCI research due to its safety and easy
operation advantages. Through the real-time analysis of
EEG signals generated by brain activity, the human con-
trol intention can be identified and decoded. Thus, the
human intention, originally expressed through speech or
other motor functions, can be now encoded by generat-
ing EEG signals, and translated via computers.

In recent years, BCI research has been rapidly
developing [2-5]. There are two control modes in BCI
systems, i.e. asynchronous and synchronous modes [6].
In the former mode, computers control the input time of
commands. Users need to cooperate with system, and

execute operations in a certain time interval. However,
human beings generally manipulate equipments in the
latter mode. In other words, users prefer to operate sys-
tems according to their needs and intents. If users do
not have control intent, the BCI will get into idle state.
Therefore, to realize asynchronous mode, it is the first
thing to reliably detect both states, i.e. idle state (IS)
and control state (CS), respectively.

SSVEP is a biological response to a visual stim-
ulus flickering at a frequency. When one gazes at
a visual stimulus modulated at a frequency of larger
than 4∼6 Hz, the prominent spectrum value of this
frequency and its harmonics can be detected from
EEG signals recorded from his/her scalp over visual
cortex [7-8]. SSVEP-based BCI (SBCI) sets up flashing
stimuli with different frequencies in different positions
on the screen, corresponding to various options or com-
mands. Recently, the SBCI system has been developed
intensively due to relatively stable performance and few
training requirements [3].

In this study, adopting blind source separation
(BSS) and continuous wavelet transform (CWT) tech-
niques, a two-stage state recognition method is pro-
posed. Using the method, the SBCI system is estab-
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lished. Further, the proposed IS detection module is
compared with other existing ones. Experimental results
show the advantages of our method and also effective-
ness of the CS discrimination module. Thus the method
introduced in this study is promising in realizing online
asynchronous mode and enhancing the recognition per-
formance of the SBCI system.

2 Methods
2.1 A BSS algorithm for preprocessing

Assume that we have M-electrode N-point EEG
signals XXX(n) ∈ RM×N sampled at time instant n. Due
to containing large noises, it is difficult to use directly
raw EEG data to detect states. The adoption of data-
driven BSS method can help to enhance the differenti-
ation between states and solve spontaneous oscillations
interference problem. Inspired by the 2nd-order blind
identification algorithm [9], the preprocessing procedure
is detailed as follows.

First XXX(n) is performed of removing direct
current [10]. Then to reduce the interference of white
noises, a one-point delayed correlation matrix is trans-
formed by singular value decomposition (SVD):

E
[
XXX (n)XXXT (n−1)

]
= UUUΣΣΣVVV T (1)

A new matrix can then be obtained:

ZZZ(n) = WWWXXX(n) =
√

ΣΣΣ−1UUUTXXX(n) (2)

where WWW =
√

ΣΣΣ−1UUUT is a whitening matrix, which is the
so-called whitening process.

Through typical Givens rotation algorithm, the
joint diagonalization is conducted for a set of point-
delayed correlation matrices E[ZZZ(n)ZZZT(n− τ)] where
τ ∈{τi| i = 1, · · · , p}. In this study, the value of p is
user dependent during offline analysis. The diagonal-
ization unitary matrix QQQ ∈ RM×M is then obtained. Thus
the multi-channel source data is given

SSS = HHHXXX = QQQTWWWXXX (3)

where HHH is a separating matrix.
Generally, hypothetically unrelated SSVEP re-

sponse and spontaneous EEG oscillation mix in raw
EEG data. Through such fast 2nd-order BSS procedure,
both components can be separated into different chan-
nels in SSS robustly. Spontaneous oscillation exhibits in a

relatively wide range of frequencies while SSVEP only
prevails at target stimulus frequency as well as its har-
monics. Thus the efficient separation of both signals can
help to use these traits for state recognition and exclude
spontaneous oscillation interference. Using the source
data SSS, IS feature is extracted for IS detection module as
described in the next section.
2.2 Idle state detection module

The IS detection module is based on CWT tech-
nique. In a previous study, we proposed the adoption
of CWT method for one-electrode SSVEP identifica-
tion [11], which indicates that compared with fast Fourier
transform-based method, the CWT-based one is more
suitable for EEG due to the intrinsic non-stationary
matching, especially for short EEG segment, thus mak-
ing it perform better in the SSVEP feature extraction
scheme. In this paper, we extend the method for IS de-
tection.

CWT is capable of adjusting the window size of its
wavelet function and providing a flexible way to ana-
lyze non-stationary signals like EEG [12]. In our study,
the complex Morlet wavelet is used as mother wavelet
due to its potential application in EEG and MEG analy-
sis [13]. It is defined as [14]

ϕ(x) =
1√
π fb

e2iπ fcxe−
x2

fb (4)

where fb is the bandwidth parameter and fc the wavelet
center frequency. Using complex Morlet CWT, it is
quite flexible to decompose sampled EEG segment into
a set of time-scaled and time-shifted versions of wavelet
coefficients W (a,b), where a is the scale factor and b
the shift one.

Define one-dimension N-point data yyy(m) (m ∈[0,
N-1]) as any channel component in SSS. Complex Mor-
let CWT is used for yyy(m) to obtain stimulus frequencies
corresponded wavelet coefficients. According to the re-
lation between a and one frequency f [15], a simple equa-
tion can be obtained:

a = fs · fc/ f , b = m (5)

where fs is the sampling rate. Thus using complex Mor-
let wavelet with only stimulus frequencies related scale
factor, the calculation of CWT for yyy(m) can be simpli-
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fied:

W (a,m) =
√

a
N

N−1

∑
k=0

YYY (k)ΦΦΦ∗(ak)ei 2π
N mk (6)

where YYY (k) and ΦΦΦ(k) denote the discrete Fourier trans-
form of yyy(m) and discrete complex Morlet wavelet
ϕ(m), respectively. To make W (a,m) easily inter-
pretable, we transform it as W ( f ,m). Define

ρ f =
1
N

N−1

∑
m=0

|W ( f ,m)|2 (7)

Thus ρ f denotes the mean energy of W ( f ,m) at f over
the temporal domain of yyy(m). When detecting both
states, the relative significance of different SSVEP har-
monics varies according to subjects. Thus it is not stable
enough to recognize state only by using a single fea-
ture. Besides, the higher SSVEP harmonic information
need to be used here to reduce frequency interference,
especially occipital alpha disturbance problem detailed
in reference [16]. As suggested in reference [17], com-
bining single members using weighting function is con-
sidered to be a better approach. It is more reasonable
to weight ρ f at individual harmonic. Thus an ensemble
feature model is built to integrate multi-harmonic fea-
tures through the weighted linear combination

Vf =
Nh

∑
j=1

w jρ j f (8)

where Nh is the number of harmonics (here we set Nh =
3 in our study), and w j the weight corresponding to
ρ j f with the constraint that the sum of Nh combination
weights is equal to 1. In essence w j denotes the relative
contribution of related feature, which is trained through
the learning procedure detailed in the next section. As-
sume there are r stimulus frequencies. Define the IS
feature

FIS = max(Dc), c ∈ [1,M] (9)

where c is the channel number and

D =

r

∑
j=1

(Vf j −Vf )2

r

∑
j=1

(− Vf j

r

∑
j=1

Vf j

· ln Vf j

r

∑
j=1

Vf j

)
(10)

where f j is one stimulus frequency and

Vf =
1
r

r

∑
j=1

Vf j (11)

FIS combines multi-harmonic features, working for
IS detection. Defined as maximum ratio of wavelet vari-
ance to entropy for multi-channel data SSS, the IS feature
actually measures the spectrum complexity at all stim-
ulus frequencies together with its harmonics. As we
know, in CS, SSVEP is an impulse response and there
exists a prominent component at the target stimulus fre-
quency and its harmonics, whereas in IS the spectrum
distribution is relatively flat. Thus high IS feature value
may denote the generation of SSVEP, i.e. CS, and vice
versa.

When the trained ensemble model is interrogated
feeding test dataset as input, we can get output ensem-
ble features FIS, which are predictive of state. Given a
threshold θ , an indicative function I(X) can be defined
to detect whether the EEG data X is in FIS

I(X) =





1, if FIS < θ

0, else
(12)

where I(X) = 1 denotes CS and I(X) = 0 IS. Thus the
prediction results depend on how the threshold is cho-
sen. For given ensemble feature FIS and a certain thresh-
old θ , Sensitivity and Specificity measure presented in
reference [16] is used to evaluate the performance of the
model. We define O as the sum of both performance
measures. The optimal threshold is the one that can get
maximum O in training dataset

θ ∗ = argmax
θ

O, θ ∈ [min(FIS), max(FIS)] (13)

Thus it becomes a general one-dimension optimization
problem with O as objective function. In our study, the
exhaustive algorithm is used to obtain optimal thresh-
old, which is incorporated with the combination weights
learning scheme described in the following section.
2.3 Weights learning and threshold estimation

In our learning scheme, a training algorithm is
designed to simultaneously obtain the combination
weights and optimal threshold. First, the whole exper-
imental data are divided into training and test samples
respectively. After single harmonic feature values are
obtained using training dataset, the weights learning and
the threshold estimation procedure are conducted. The
parameters trained here will be used in (12) for IS de-
tection module in the test datasets.
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Inspired by the expectation-maximization algo-
rithm [18], which is a robust method adapted to learn pa-
rameters using incomplete data corresponding to the un-
known weights here, we give the weights learning and
threshold estimation scheme:

Step1 For each stimulus frequency, calculate Nh

values of ρ j f ( j = 1, · · · ,Nh) according to (7) indepen-
dently using the same training samples.

Step2 Assign weights w1
j ∈ [0,1] randomly. Com-

pute Vf according to (8) and FIS using (9).
Step3 Determine optimal threshold θ 1 through the

above threshold optimization procedure.
Step4 Set each ρ j f to Vf and evaluate the perfor-

mance of single harmonic IS features with θ 1 on the
training dataset. These performance evaluations are fur-
ther used to obtain w2

j by (14).
Step5 Calculate F2

IS using w2
j . Find the current op-

timal threshold θ 2 via the threshold optimization proce-
dure.

The scheme above can be iterated to get convergent
values. In Step4, a transformation is conducted to con-
vert performance evaluations respectively obtained into
weights:

wi+1
j = Oi

j

/ Nh

∑
n=1

Oi
n (14)

where Oi
j and wi

j are the evaluated performance and the
weight of the j-th harmonic feature respectively in the
i-th iteration. Here in our study only three rounds of it-
erations are used. Through this iteration procedure, the
overall performance of the IS detection module is im-
proved by decreasing the relative significance of single
FIS features with worse performance and increasing that
of the ones that works better. Meanwhile, the combina-
tion weights are learned and the detection threshold is
estimated. Then the obtained parameters are used for IS
detection in the test dataset.
2.4 Control state discrimination module

When CS is determined, the target stimulus needs
to be identified. For this purpose, the CS discrimination
module is presented using the obtained values in the first
stage. First, the channel corresponding to FIS in SSS is ob-
tained,

l = argmax
c

(Dc), c ∈ [1,M] (15)

For the l-th channel, define the ensemble CS feature vec-
tor using Vf

FFFCS = [Vf1 , · · · ,Vfr ]
T (16)

In the second stage, SVM [19] is employed to per-
form real-time CS discrimination. As a supervised
learning machine, SVM can achieve remarkable gener-
alization performance based on statistical learning the-
ory [20]. In our SBCI, for each EEG trial data, taking
FFFCS as input feature vector, the SVM model is used to
decode users’ intention into a corresponding command
to realize EEG control of human intention.
2.5 Overview of the proposed method

The block diagram of our method is shown in
Fig.1. The two parts divided by the dash dot line com-
pose the two-stage state recognition structure, i.e. IS
detection and CS discrimination modules. If the CS is
detected through the first stage, the target stimulus will
be identified in the second stage and then transformed
into the predefined command.

threshold
estimation

w
i+1

ρf

ρ2f

w2

ρNh f

weights
learning

Yes

BSS CWT

idle state

FCSSVM

EEG

command

No

Stage I

θ*

θ
i

Stage II

i

FIS
i

wNh

i

w1
i

Fig.1 Framework of our two-stage state recognition method

3 Experimental results
3.1 Experimental setup

In our experiment, there are four stimulus sources
on a LCD screen (60 Hz refresh rate, 1024× 768 resolu-
tion) with four frequencies, i.e. 15, 12, 10 and 8.57 Hz,
respectively. Users can choose to focus on any stimulus
according to their intents.

EEG data are measured using a whole-head
BioSemi ActiveTwo system (highpass, 3 Hz; sampled at
256 Hz). Due to the physiological mechanism that max-
imum SSVEP amplitude is evoked over occipital area,
the used electrodes are P3, Pz, P4, PO3, PO4, O1, Oz
and O2 (10/20 sites).
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Ten subjects with normal vision capability, aged
from 20 to 30, served as paid volunteers after giving
informed consent. Seven of them were naive to EEG
experiments prior to this study. In the experimental pro-
cess, the subjects were seated in an armchair in a lab
room. Each trial lasted 2 s and subjects had 0.3 s inter-
val between trials. In CS, each subject did 50 trials for
focusing on each stimulus, while in IS the subjects could
see any places without watching the screen or close their
eyes or even make casual conversation, and each also
did 50 trials. For every 2 s trial, the EEG data from all
subjects were analyzed. The accuracy results were used
for evaluating the performance of our method and other
ones. Besides, the accuracy was obtained by 10-fold
cross validation to avoid randomness.
3.2 Experimental results

Here we randomly take one subject’s experimental
result for detailed analysis below. The distribution of
all the IS feature values is shown in Fig.2. It is obvious
that mostly, the IS feature values in IS are rather smaller
than that in CS, denoting that compared with CS, the
stimulus frequencies related spectrum complexity is rel-
atively higher in IS. Hence effective IS detection can be
achieved using the learned optimal threshold. By em-
ploying a set of IS feature values as detection threshold,
a receiver operating characteristic (ROC) curve is shown
in Fig.3. Further, comparison is shown between our
method and the PCC0 one that Ren et al. proposed [16],
which only uses dual polar and the principal component
analysis (PCA) based method. As seen in Fig.3, the
change of ROC curves denotes that different thresholds
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Fig.2 Distribution of the ensemble IS feature values of
training samples for subject 1
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Fig.3 ROC curves based on the IS feature values for subject 1.
The black upward-pointing triangle marker denotes the position
where the sum of Sensitivity and Specificity reaches maximum.

Hence the corresponding IS feature value is chosen as the
learned optimal threshold θ ∗

greatly affect Sensitivity and Specificity. More impor-
tantly, compared with the PCC0, our method achieved
more satisfactory performance.

We compared our method with the one proposed
by Wang et al. [21], which used multiple electrodes and
considered alpha waves interference. Tab.1 lists the Sen-
sitivity and Specificity for both methods respectively. It
is illustrated that although our method attains slightly
lower Specificity, the Sensitivity is improved greatly.

Tab.1 Performance of idle state detection module (%)

subject
the proposed method Wang et al.’s method

Sensitivity Specificity Sensitivity Specificity

1 92.8 90.8 70.6 96.6

2 91.1 95.1 92.1 97.6

3 91.4 90.5 92.2 100

4 98 95.4 85.2 98.4

5 74.5 78.1 71.7 95.7

6 98.1 97.8 80 100

7 90.7 87.3 91.6 95

8 96.8 94 85 100

9 77.2 82.4 70 92.8

10 82.6 79.6 70.8 91.8

average 89.3 89.1 80.9 96.8

Tab.2 shows the performance of the CS discrimina-
tion module. It is readily observed that the mean accu-
racy is 97.1%. Thus as for the second stage, the results
verify the low inter-user variation and satisfactory per-
formance.
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Tab.2 Performance of control state discrimination module (%)

subject SSVEP classification accuracy

1 100

2 97.5

3 99

4 99.3

5 97.3

6 100

7 97.1

8 99.2

9 85.8

10 96

average 97.1

4 Discussion
SSVEP is a quite weak response compared with

spontaneous EEG signals. Thus in the PCA based PCC0

method, the extracted primary component may contain
large noise. Further, spontaneous oscillation interfer-
ence isn’t considered, so it is difficult for the approach
to achieve satisfactory performance as shown in Fig.3.

In our experiment, the stimulus frequencies coin-
cided with the occipital alpha band. Thus the frequency
interference may occur. In our method, the problem can
be effectively solved due to robust BSS procedure as
well as the higher SSVEP harmonics information incor-
porated into the ensemble feature model. Hence com-
pared with Wang et al.’s approach, our method provides
a better way in excluding the spontaneous oscillation in-
terference not limited to alpha disturbance.

In formula (1), the one-point delayed correlation
matrix is used for SVD, because the self-similarity of
large approximate white noise can be reduced through
taking time delay into account. Meanwhile in CS, the
SSVEP response can be enhanced and extracted using
BSS. Further to make reaction time short enough, the
time delay should not be much long. By assessing dif-
ferent delay lengths, the one-point delay is chosen to
achieve effective performance.

Mostly, users prefer to accurate detection in their
IS. They are more tolerant when their CS is wrongly
detected as IS. For this case, we can change the thresh-
old estimation strategy. The detection threshold should
be adjusted to attain Specificity of above one floor lever
and acceptable Sensitivity as high as possible.

In the proposed method, the adoption of CWT
improves the effectiveness of extracting ensemble fea-
ture. The calculation of wavelet coefficients with stim-
ulus frequencies doesn’t take high computational com-
plexity. Besides, our method makes full use of multi-
electrode EEG to obtain significant recognition informa-
tion, which integrates functions of spatial filtering and
feature extraction. Especially for short segment, greater
performance can be achieved through our method than
the unipolar or bipolar based ones. Further, better ef-
fect may be obtained by using more electrodes. With
the real-time calculation and space complexity in mind,
only eight fixed electrodes were used in our method.

5 Conclusions
In this paper, using BSS and CWT techniques, a

two-stage state recognition method is proposed for our
SBCI system. In IS detection stage, the ensemble IS
feature turned out to be a satisfactory index for detecting
idle and control states. Through the CS discrimination
stage with the FFFCS input, users’ control intention can
be decoded into corresponding control commands with
high classification performance. The experimental re-
sults validated the effectiveness and satisfactory advan-
tages of the proposed method over other ones. There-
fore, it is promising that our approach can be further
modified and improved to realize online asynchronous
SBCI system.
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